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Abstract. Bruteforcing methods have been used with limited success
in guessing passwords longer than 6 characters, because as the length of a
password increases, the number of possible combinations grows exponen-
tially. However, traditional bruteforcing methods rely on the fact that
passwords are distributed uniformly amongst the set of all possible pass-
words. This assumption is flawed because when people pick passwords,
they do so based on observable patterns. These patterns effectively lower
password entropy and make passwords subjectible to probabilistic anal-
ysis. Various Markov Models applied to bruteforcing have shown success
at guessing passwords with higher frequency than traditional bruteforce
methods, and this paper seeks to explore these models and their relative
effectiveness. The models discussed are Markov Chains (without memory,
with memory, and indexed) and Hidden Markov Models.
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1. Introduction and Background Information

Passwords have been used for thousands of years as a way of authenti-
cating users and granting access – just think about the most famous tale
of the Arabian Nights, where woodworker Ali Baba famously discovers the
command “open sesame” to unlock the treasure of the 40 thieves. Need-
less to say, passwords have evolved tremendously in the last century since
the advent of the modern computer. Now they can be stored, hashed and
salted, cracked, and randomly generated, and much more all with little more
than a few keystrokes. While this has helped to revolutionize computer se-
curity, it has also led to attacks on security that less than several decades
ago would have seemed like the inventions of the most bold of science fiction
writers. If Ali Baba had been able to guess 1 million passwords a second, his
tale would seem much less compelling. Nevertheless, even an 8 digit pass-
word with the option of both lowercase and capital letters, numbers, and
special characters (which for this example we will say are !@#$%&*()^) has
728 = 722, 204, 136, 308, 736 possible variations. If we were to guess these
passwords at an arbitrary, although seemingly fast rate of 1 million guesses
per second, it would still take nearly 18 years to guarantee the correct pass-
word was found. If we were to guess these passwords at a rate of 8 billion per
second (which is entirely feasible using common computers for a fast hashing
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algorithm), then this time drops to a mere 25 hours. Even so, with a mere
increase in the length of the password to 12 characters with the same rules,
keeping a guess rate of 8 billion guesses per second, the time jumps to an
astronomical 76929 years. It goes without saying that this is too long for
most of us to wait.

These numbers are making a critical and extremely flawed assumption,
though – namely that people’s passwords are uniformly distributed amongst
the space of all potential passwords. Of course this is intuitively false, as any
person could tell that “Kittycat123!” is much more likely to be a password
than “0k@#Hckpdz%5,” even though both passwords are 12 characters. It
is also intuitive that the first option is much more memorable than the sec-
ond, which is one possible reason most people would refrain from picking
the second password. In any case, humans have shown themselves time and
time again that they are the weakest link in security and are inherently bad
at picking good passwords while being inherently good at picking bad pass-
words. With this in mind, it should be possible to derive a mathematical
approach that explains why we intuitively know that “Kittycat123!” is a bad
password and “0k@#Hckpdz%5” is probably not bad, and vice versa, why it
makes more sense to guess passwords like “Kittycat123!” first. Armed with
this logic, it should be possible to drastically reduce the number of passwords
worth guessing, effectually introducing a time-space tradeoff wherein we sac-
rifice the guarantee of getting all passwords over a very long period of time
for a high probability that we get many passwords relatively quickly.

So how, then, can we mathematically represent the intuitive differences
between different types of passwords? To begin exploring this question, we
must first understand some password trends. A 2004 study done at the Uni-
versity of Cambridge sought to answer some basic questions about password
generation in relation to the security-memorability tradeoff amongst a sample
of first year students. What they found was that password memorability was
one of the most significant and determining factors that went into password
selection. Amongst their other results, they found that special character
use was almost non-existent, and many passwords were some form of per-
mutation or direct use of common dictionary words[11]. Additional, more
recent research by Microsoft developer Troy Hunt confirms this [3]. This fi-
nal point lies at the heart of this thesis, because it allows us to make the fairly
good assumption that many passwords look like words1, much like “Kitty-
cat123!,” which is especially helpful because there are already mathematical
models that help describe the characteristics of words. One such model is
the Markov Model.

1Note that here, word refers to the natural definition of word and not the mathematical
or linguistic definitions
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1.1. Some Basic Probability and Set Theory. Before continuing, it will
be helpful to discuss some basic probability and set theory that will be used
at various times in this paper.

Definition 1.1 (Discrete Random Variable[4]). A random variable as it is
used in this paper is a map from the state space to a specific outcome in the
state space (which is defined in section 2.1). It is said to be discrete if it
takes on at most countably many values (including finitely many).

Definition 1.2 (Stochastic Process[12]). A stochastic process is a family of
random variables {XT } indexed by 1 ≤ t ≤ T .

Put simply, this is a sequence of random variables that can take on values
from the state space.

Definition 1.3 (Conditional Probability[4]). Let A,B be two sets. Then
P(A|B), read “the probability of A given B”, is defined

P(A|B) =
P(A ∩B)

P(B)

Theorem 1.4 (Associative Laws for Sets[4]). Let A,B,C be sets. Then
A ∩ (B ∩ C) = (A ∩B) ∩ C and A ∪ (B ∪ C) = (A ∪B) ∪ C

Theorem 1.5 (Distributive Laws for Sets[4]). Let A,B,C be sets. Then
A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) and A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

Theorem 1.6 (Law of Total Probability[5]). Let A be a set and let Bi for
1 ≤ i ≤ T be a collection of subsets that partition the set B (ie for 1 ≤ i 6=
j ≤ T , Bi ∩Bj = ∅ and ∪Ti=1(Bi) = B). Then

P(A) =

T∑
i=1

P(A ∩Bi) =

T∑
i=1

P(A|Bi)P(Bi).

2. Markov Chains

2.1. Standard Markov Chains. Markov Models, which are a type of sto-
chastic or random process, are frequently used in linguistics. Under the
umbrella term Markov Model, there exist several different forms of Markov
processes. In our quest to find the best way of guessing passwords, we con-
sider one of the most rudimentary; the Markov Chain. The idea is fairly
simple, but first we need some solid definitions. Once definitions are out of
the way, we’ll start with simple examples that should allow us to extrapolate
to analyzing real password sets.

To begin, we need to consider how to mathematically describe passwords,
which we can begin to do by thinking about the place where passwords are
most often created: websites. When creating an account on most websites,
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the user is prompted to enter a password, and in a majority of cases the web-
site prescribes a set of rules for password creation. For example, FaceBook
may require that your passwords are at least eight characters long, con-
tain uppercase and lowercase letters, a number, and a special symbol. We
can describe these different requirements (i.e. lowercase, uppercase, number,
symbol) as a single parameter that dictates the creation of passwords, and
for now we hold off adding password length. This is important to consider,
because trying to guess FaceBook passwords by guessing only passwords with
lowercase letters would be a waste of time. We continue, then, to define more
thoroughly by defining a state space:

Definition 2.1 (State Space). Let {XT } be a discrete stochastic process and
let Σ = {σ1, ..., σm} be the set of values {XT } can take. Then we define Σ
as a state space.

It should be noted that the elements in a state space, the states, are
thought of as transitioning from one to another, and that the stochastic
process {XT } at time t must occupy some state, so that Xt = σi for σi ∈ Σ.

Example 2.2. If we consider X = {X1 = x1, ..., XT = xT }, a sequence of
random variables representing some choice of characters in a password along
with a state space Σ = {a, b, c, 1, 2, 3}, then for T = 4, we may observe the
sequence X = {X1 = a,X2 = b,X3 = 1, X4 = 2}, which is just the password
ab12. Moreover, any given state space Σ can have all the needed components
for password creation, including upper case and lower case letters, along with
numbers and special characters.

In the discussion of state spaces thus far, it has been mentioned only that
states transition from one to another, without mention of how exactly these
transitions are decided. This decision making process occurs according to
some set of governing probabilites, which are given in the form of a transition
probability matrix TΣ.

Definition 2.3 (Transition Probability Matrix). Let {XT } be a stochastic
process and let 1 ≤ t ≤ T − 1. Let TΣ be a matrix such that TΣ = {aij =
P(Xt+1 = σj |Xt = σi)}. Then we say TΣ is a transition probability matrix.
Also note that notationally TΣ can be written TΣ = {aij = P(σi → σj)}.

We are now almost ready to rigorously define a Markov Chain, but we
must first define what it means for a stochastic process to have the Markov
Property.

Definition 2.4 (Markov Property). Let X = {X1, ..., XT } be a sequence of
random variables. If for any positive integers 1 ≤ k ≤ t ≤ T and for any
choice of states Xk = xk, ..., Xt = xt it is true that

P(Xt = xt|Xt−1 = xt−1, ..., Xk = xk) = P(Xt = xt|Xt−1 = xt−1),
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whenever the conditional probabilities are defined, i.e. whenever the condi-
tioning events have positive probabilities2, then the stochastic process {XT }
is said to possess the Markov property.

Definition 2.5 (Markov chain). Let {XT } be a stochastic process that pos-

sess the Markov property and that is parameterized by Σ, TΣ, ~Π, where Σ is

the state space, TΣ is the transition probability matrix, and ~Π is the initial

distribution vector described by ~Π = {πi = P(X1 = σi)}. Then we say {XT }
is a Markov chain. [6]

A Markov chain can be used either to analyze or generate a finite sequence
of observations X = {X1 = x1, ..., XT = xT }. If we are analyzing an already-
observed sequence of states, we are interested in the overall probability of
observing that sequence.

Claim 2.6. Given a Markov chain parameterized by Σ, TΣ, ~Π, the total prob-
ability of observing a sequence of states X = {X1 = x1, ..., XT = xT } is
calculated as follows:

π1

T−1∏
t=1

at,t+1

where π1 is the probability P(X1 = x1) and at,t+1 = P(Xt+1 = xt+1|Xt = xt).

Proof. Let X = {X1 = x1, ..., XT = xT } be a sequence of states that ad-

heres to the Markov chain parameterized by Σ, TΣ, ~Π. By the definition of
conditional probability this can be rewritten as

P(XT = xT |X1 = x1, ..., XT−1 = xT−1)P(X1 = x1, ..., XT−1 = xT−1).

However, by the Markov property this is just

P(XT = xT |XT−1 = xT−1)P(X1 = x1, ..., XT−1 = xT−1).

By the parameters of the Markov chain, P(XT = xT |XT−1 = xT−1) = aT−1,T ,
so this can be further rewritten as

aT−1,TP(X1 = x1, ..., XT−1 = xT−1).

Because X is finite of length T , it follows that this process can be repeated
until the following is obtained:

2We must include this last part to be safe: consider a case in which the probability
of transitioning from Xt−1 = xt−1 to Xt = xt is 0, but the probability of transitioning
from Xt = xt to Xt+1 = xt+1 is greater than 0. Then using the definition of condi-
tional probability, we can write P(Xt+1 = xt+1|Xt = xt, Xt−1 = xt−1, ..., Xk = xk) =

P(Xt+1=xt+1,Xt=xt,Xt−1=xt−1,...,Xk=xk)

P(Xt=xt|Xt−1=xt−1,...,Xk=xk)P(Xt−1=xt−1,...,Xk=xk)
, and then by the Markov Property, we get

=
P(Xt+1=xt+1,Xt=xt,Xt−1=xt−1,...,Xk=xk)

P(Xt=xt|Xt−1=xt−1)P(Xt−1=xt−1,...,Xk=xk)
=

P(Xt+1=xt+1,Xt=xt,Xt−1=xt−1,...,Xk=xk)

0×P(Xt−1=xt−1,...,Xk=xk)
which

is undefined.
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aT−1,TaT−2,T−1...a1,2P(X1 = x1) = P(X1 = x1)
T−1∏
t=1

at,t+1.

Then by ~Π,

P(X1 = x1, ..., XT = xT ) = π1

T−1∏
t=1

at,t+1.

�

One more definition will help more concretely define the type of Markov
chain that describes passwords:

Definition 2.7 (Reversible Markov Chain). A Markov chain is said to be
reversible if there is a probability distribution over states π such that

πiP(Xt+1 = σj |Xt = σi) = πjP(Xt+1 = σi|Xt = σj).

This condition is also known as detailed balance, and in terms of passwords,
it essentially says that given two characters, say a, b, P(a → b) = P(b → a),
and for a Markov chain with only one transition matrix, this results in a
symmetric matrix. It should be clear, however, that passwords likely do not
follow this pattern, as one would expect P(a → b) > P(b → a). In the
example construction of a Markov chain for a fabricated password set listed
later in this section, this is exactly the case.

Simply put, a Markov chain gives us information about transitioning from
a current state to a new state, which letters in a word do. In order to ap-
ply Markov chains, though, we first need to know all the probabilities of
transitioning from one state to another. To estimate these probabilities, we
use observeable data, which in the case of passwords could be a large list
of real-world passwords. The process of using data to find these transition
probabilities is what “training” a Markov chain refers to, but this will be
more rigorously defined later. In the language of passwords, if our current
“state” is the letter b, a Markov chain “trained” with some data set will tell
us the breakdown of probabilities for what the next most likely characters
are according to the training set (i.e. the large list of real-world passwords).
Markov chains are memoryless, however, which means that the only factor
affecting the likelihood of a transition is the current state and not anything
preceding it. Unfortunately this is somewhat problematic. For example, if
we considered the characters in the word “abracadabra,” where moving from
each letter to the next is our transition, then given that our current state
is d, it is clear that we are at the sixth transition (assuming that we don’t
consider being at the first letter a transition). Most english speakers could
identify the whole word given just the string “abracad,” but a Markov chain
would be unable to consider the path leading to d or “abraca,” offering us
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instead the probability that d will transition to some other letter based on
the distribution of letters after d in our training set. This happens because
english words don’t entirely exhibit the Markov property - intuitively, and
using an abreviated notation from the definition 2.2, we cannot say that
P(a|abracad) = P(a|d) because we cannot ignore the extra information en-
coded in the start of the word.

While passwords and regular words do not necessarily exhibit the Markov
property, we can still gain insight by treating them as though they do. For
example, it is intuitive that vowels and consonants follow certain distributions
where given a current state of “vowel,” there is a high probability that the
next state will be a consonant. In fact, Markov himself showed this by
applying a Markov model to the text of Eugene Onegin in his native language,
Russian[7]. If nothing else, letters in words do follow certain distribution
probabilities, even if a simple Markov chain isn’t the best at fleshing out the
most accurate distribution. Nevertheless, we must start somewhere.

A constructed example will aid in showing how we can actually apply a
Markov chain to passwords. Let’s say that some site, hackedsite.com, enforces
users to create passwords using elements drawn from Σ, and that we have
obtained a list of real passwords from hackedsite.com. Perhaps this list of
passwords looks like:

• ababab
• 12ab
• ab123
• a13b13c

• abcabc
• a1c2c3
• 123abc
• 1121332233

• abc131
• a1b2c3
• b2a133
• a1b12c

While these passwords are pretty arbitrary and therefore difficult to glean
real information from, they provide a nice point to start thinking about
passwords. For example, after a bit of head scratching it shouldn’t be too
difficult to recognize a few basic patterns. First, it is immediately noticeable
that the term abc appears in many of the passwords4. The term 123 appears
several times as well. These are broader patterns, but even on a character
by character basis, patterns can be found. For example, the most common
character after 1 is 2. However, 3 is also somewhat common to see after 1.
The most common character after a is b, but another common character is
1. So on and so on. By now it should be becoming clear how we intend to
use a Markov chain.

3Fun fact: this password is actually a DeBruijn sequence - it encodes all possible transi-
tions from one number to another in a minimal string without repetition, if you wrap back
to the beginning after the final 3!

4abc is fairly easy to remember, so it’s not hard to believe someone would include it in
a real password.
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The first thing to establish is the state space with which we are working,
which is precisely the characters a, b, c, 1, 2, 3. Elements in this state space
transition from one to another, and can be visualized by the following:

Figure 1. A decision making graph for S = {a, b, c, 1, 2, 3}

Figure 1 is intentionally left unweighted because it would be very crowded
if the edges of the graph were labeled with their weights. More importantly,
these weights, which are the probabilities of a given state transitioning to
another (and in the case of the graph are assigned to the edges between two
vertices, representing a transition from one vertex to the other), have not yet
been estimated: they comprise the transition probability matrix T .

Now, assuming there existed another site securesite.com possessing the
same state space Σ as hackedsite.com with a list of secret passwords, we
can start using the information from hackedsite.com to assist us in guessing
passwords, assuming the second site’s users had similar internal methods
for picking passwords5. Let’s begin by assuming we want to start guessing
passwords of length 6. The first thing we could do is to try guessing every
possible password of length 6 from our state space Σ. Doing so would require
66 = 46, 656 guesses which is easy to do on a computer, but still more work
than desired (and which, in a realistic setting of a state space closer to 94
characters, would be much larger). Instead, it makes sense to optimize which
passwords we guess first by using the data we have to train our decision
making. We begin to start training our model, i.e. using data to abstract the

5This is a fairly good assumption if we train our model with a large, realistic data set.
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general relationships that will make up the parameters ~Π and T . To estimate
~Π we tally up all the first characters. From this we observe that most of the
passwords (8/12 or 67%) from hackedsite.com begin with a, and so we can
infer that passwords from securesite.com might also begin with a a large
percentage of the time. It makes sense, then, to start guessing passwords
that begin with a. From here, we want to choose the next best letter to try,
so we tally up all transitions that occur in the list of passwords to find which
transitions are most likely. Note that the last letter of a password does not
make a transition, so we only consider character transitions up to that point.
For clarity, the number of times each transition takes place is placed in a
matrix A:

A =



a b c 1 2 3

a 0 9 0 4 0 0
b 2 0 4 3 2 0
c 1 0 0 1 1 2
1 0 2 1 1 5 5
2 2 0 3 1 1 3
3 1 1 1 2 1 2


This matrix gives the overall number of times a particular transition is

made, where rows represent the current state, the columns represent the
state to which we are transitioning. To put this in terms of probability (the
weights of the edges of the graph in Figure 1), we sum the entries in each
row, and then each entry is divided by the sum of its row. Our new matrix
becomes our transition matrix:

TΣ =



a b c 1 2 3

a 0 0.69 0 0.31 0 0
b 0.18 0 0.37 0.27 0.18 0
c 0.2 0 0 0.2 0.2 0.4
1 0 0.14 0.07 0.07 0.36 0.36
2 0.2 0 0.3 0.1 0.1 0.3
3 0.125 0.125 0.125 0.25 0.125 0.25


We now have a transition matrix as discussed in definition 2.2. More-

over, this matrix is learned from data provided by hackedsite.com and will
hopefully allow us to make better guesses in the future.

Now that we have trained our transition matrix T using data, we return
to our initial goal, which is to optimize the number of passwords we can
guess in a limited amount of time. Since longer passwords created from
larger character spaces will require exponentially more guesses to the point
that it is infeasible to try all combinations, we want to make only the most
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sensible guesses with the recognition that some passwords may not be found.
However, the goal is to correctly guess as many as possible within some sort
of time constraint. Again, since we decided to begin guessing passwords
that start with a, our new transition matrix tells us that a is most likely
to transition to b, which is most likely to transition to c, etc.. If we follow
through this process, we end up with several passwords that at first glance
appear equally probable:

• abc312
• abc313
• abc331
• abc333

If we actually use the values from our transition probability matrix to
calculate the probability of these passwords, however, we see that the first
two passwords are about 1.5 times more likely. We can also see this by
looking at our transitions on what is called a weighted tree, which is similar
in function to the weighted graph discussed earlier. This time, however, each
“branch” in the tree represents a transition, and where there are more than
one “branch,” we must make a decision as to where we will transition. The
weights on the tree define the conditional probabilities from T and direct us
in our decision making (we should generally pick the most probable decision):

Figure 2. A weighted decision tree for our Markov chain

It was stated that the password combinations we obtained using T looked
equally probable, but that they were in fact not. The unequal probabilities
happen because even though transitioning either to 1 or 3 when we are at
abc3 is equally probable, the subsequent transitions are not equally probable
- a transition from 1 to a 2 or 3 occurs with a probability of 0.36, while a
transition from a 3 to either a 3 or a 1 has a probability of 0.25. In fact,
when we try to start picking some of the next most probable passwords we
run into a problem - at which points in our decision tree do we decide to
pick the second most probable option? Should we veer off immediately, say
by transitioning from a → 1? Or should we choose to branch out closer to
the end, say by taking the path abc31b, where b represents the second most
probable outcome after 3?



12 JUSTIN HIEMSTRA

Unfortunately, finding the most probable strings now becomes a matter of
following every branch of the decision tree to the end and then comparing
the probabilities of the resulting strings with each other. While this is easily
done for our example using a computer, in the case of a large character space
with longer passwords, this turns into having to compute billions and billions
of probabilities and storing them in memory. Our hope had been that using
a Markov chain would return the most likely passwords first without using
up lots of time and physical resources. What would be need to continue
this path, other than more computing power, is an efficient algorithm for
computing the n most probable strings generated by a Markov chain. As is,
a Markov chain with parameters estimated from large data sets will be used to
estimate the probabilities of observing various passwords in section 4, which
we will use to affirm our intuitive notion that passwords like “Kittycat123!”
are in fact more likely to be observed in real life. Additionally, by estimating
the probability of observing a password in real life something can also be said
about the potential security of a password, with the idea being that a “less
likely” password is less likely to be guessed in a targeted attack that uses one
of the methods described in this paper.

2.2. Markov Chains with Memory. As was mentioned in 2.1, Markov
chains are generally considered memoryless, and this is a problem for us
because we intuitively know that words, which are most often used to create
passwords, do not exhibit the Markov property. Thankfully, there are forms
of Markov chains that introduce a form of memory.

Definition 2.8. We say a Markov chain has “memory of length m” if it
satisfies the property

P(Xt = xt|Xt−1 = xt−1, Xt−2 = xt−2, ..., X1 = x1)

=P(Xt = xt|Xt−1 = xt−1, Xt−2 = xt−2, ..., Xt−m = xt−m) for t > m

As before, we are interested in calculating the probability of a given pass-
word, assuming password creation can be reasonably modeled by a Markov
chain with memory (also referred to as a higher order Markov Chain in some
places). Then let X be a sequence of states X = {X1 = x1, ..., XT = xT } that
can be modeled by a Markov chain with memory m, and define k = T −m.
By conditional probability this can be rewritten as

P(XT = xT |XT−1 = xT−1, ..., X1 = x1)P(XT−1 = xT−1, ..., X1 = x1).

Because the Markov chain has memory m, this can be rewritten as

P(XT = xT |XT−1 = xT−1, ..., Xk = xk)P(XT−1 = xT−1, ..., X1 = x1).

It follows that this process can be repeated until the following, written in
shorthand to be concise where Xi = xi is just abbreviated Xi, is obtained:
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P(XT |XT−1, ..., Xk)P(XT−1|XT−2, ..., Xk−1)...P(Xm, Xm−1, ..., X1)

To calculate these values, it is necessary to know the probabilities of transi-
tioning to each state given every possible permutation of preceding m states,
or P(Xi = xi|Xi−1 = xi−1, ..., Xi−m = xi−m), which for a state space with
n characters, requires knowing nm different probabilities. To more easily
understand this, we can use a change of variables where we define each per-
mutation X̂j = (Xi−1 = xi−1, ..., Xi−m = xi−m). We can now think of the
x̂’s as being new states that transition to states in Σ.

Example 2.9. Consider the sequence abcde, and assume it is being modeled
by a Markov chain with memory m = 2. Then the x̂’s are every possible
permutation from Σ = {a, b, c, d, e} of length 2, and the observed X̂’s are

X̂1 = ab, X̂2 = bc, X̂3 = cd, where each x̂ can be thought of its own new
character. Moreover, the transitions are ab → c, bc → d, cd → e. Also note
that despite the fact that in a regular Markov chain this sequence would have
4 transitions, for a Markov chain of length 2 it has only 3. In general, there
are T −m total transitions.

As has been noted, for a Markov chain with state space Σ of size n and
with memory m, there are nm x̂’s that need to be calculated. Effectually,
this causes the transition matrix T to grow in size as well. Whereas with
a regular Markov chain T was n × n, the transition matrix T for a Markov
chain with memory will be nm × n. However, similar to regular Markov
chains, a value aij in the matrix describes the probability of transitioning
from x̂i to an element in the state space σj . Because of this overall increase
in complexity, Markov chains with memory being modeled on computers
are generally restricted to lower values for memory. As will be discussed in
section 4, a Markov chain with m = 2 for a full 94 character state space is
sufficient to cause significant calculation wait times.6 It should also be noted

that ~Π will change slightly, as now the first “character” is a tuple, and so ~̂Π

must be redefined as ~̂Π = {π̂i = P(X̂1 = x̂i) = P(Xm = xm, ..., X1 = x1)}
Putting together this information, we can calculate the probability of a

sequence X = {X1 = x1, ..., XT = xT } the same way we do for regular
Markov chains:

π̂i

T−m∏
at,t+1.

2.3. Indexed Markov Chains. There is yet another component of Markov
chains that has been assumed to be true, but that upon inspection of pass-
words seems unlikely. Namely, this is the assumption that the state transition

6At least this was true for how the author implemented this. Perhaps there is a more
clever way to do so.
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matrix T is the same regardless of time. When we are considering passwords
though, we can observe trends that contradict this. For example, when a
password contains a capital letter, overwhelmingly that capital letter is the
first letter in the word. Also, when it contains a number or special character,
that number or character is usually found at the very end of the password
[3]. This leads us to think that perhaps it is faulty to assume T does not
change with time since it does not appear that the same distribution gov-
erns letters and numbers at the beginning and at the end of a password. To
continue improving our simple Markov chain, we adapt it to make use of
different transition matrices based on different time indices as we transition
from character to character. Overall the Markov chain operates the same,
except for each index t = 2, 3, 4... a different transition matrix, trained from
data, is used. Visually this can be thought of using the following diagram
(borrowed from [10]):

Figure 3. Regular vs Indexed Markov Chain

On the left is a regular Markov chain, and on the right an indexed Markov
chain. Notably, the extra layers in the picture of the indexed Markov chain
represent separate T matrices for each index.

It will help further in understanding this concept to introduce a time ho-
mogeneous Markov chain:

Definition 2.10. A Markov chain is said to be time-homogeneous (or sta-
tionary) if for all 2 ≤ t ≤ T − 1 it is true that

P(Xt+1 = σj |Xt = σi) = P(Xt = σj |Xt−1 = σi).

It follows then that a Markov chain with different transition matrices for
different indices is not time-homogeneous.

There are several different ways to implement an indexed Markov chain,
as will be discussed in section 4. One method is train the transition matrices
on a set of sequences of a fixed length (eg passwords with 8 characters),
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which will more accurately describe sequences of that length. Another is
to predetermine how many transition matrices will be created and then use
sequences of different lengths to train those matrices. In general, this should
cause the matrices to more accurately reflect different trends about average-
lengthed passwords, but the problem is that transition matrices for higher
indices will have less data with which to be trained because passwords are
an average of only 9.6 characters [3].

3. Hidden Markov Models

So far we have looked into Markov chains in hopes of finding an efficient
algorithm that can tell us which character sequences are more worthwhile
to guess as potential passwords over others. While a simple Markov chain
showed some promise, it presented several issues in that finding the n most
probable character sequences was a difficult problem that required as much
work as guessing all possible passwords (at least, we haven’t found a more
efficient way to do this yet - which does not mean there isn’t an elegant
solution). As such, we now turn to another form of Markov model known as
a Hidden Markov Model (HMM for short). Hidden Markov models are used
very often in linguistics because they’re exceptional at modeling sequential
data (much like characters in a password) and because they can be used to
flesh out certain properties that might be hidden within data (which sounds
pretty good when we’re thinking about passwords). One notable field in
which HMMs have found great success, just like Markov chains, is linguistics,
where they’re used in many different predictive speech systems for tagging
parts of speech. While it is not totally obvious yet how an HMM might be
applied to the overall goal of this thesis, they seem closely enough related to
the topic that they seem like a worthwhile approach.

3.1. Hidden Markov Models. A hidden Markov model can be visualized
nicely using what is called a Trellis diagram, which shows an ordered sequence
of nodes. Before a rigorous definition of hidden Markov models, consider first
a case similar to that discussed in 2.1, where we have a set of states capable
of transitioning between each other. This time, however, the states are not
the sole object of focus because they’re actually “hidden”, or unobservable.
Instead, the states give off or emit certain observations, which is the part of
the system we can see. Such a system can be visualized in this trellis graph:



16 JUSTIN HIEMSTRA

Figure 4. Trellis diagram for hidden states s1, ..., sn and
emitted observations o1, ..., on

Here, we see a sequence of states that remain unobserved and a sequence
of observations that give us some information about the hidden states. To be
precise, we can use the probabilities that certain states emit various obser-
vations to actually discover quite a bit about the hidden sequence of states.
Now let’s be a little more precise about what an HMM really is.

To define a Hidden Markov model, we need several things. First, we need
to know that whatever we are modeling transitions between a finite number
of states, and that each state gives some sort of emission(s) which can be
observed, and which come from a finite set of possible emissions. This part
of the definition is unavoidably vague because these states and emissions can
take a multitude of forms and really must be evaluated on a case-by-case
basis. For example, states could consist of whether it is raining or sunny,
and emissions might be whether a person feels safe or unsafe driving to the
grocery store given the weather (this example, or variations of it are used
quite often [9][8]). We also need some way to know the probabilities of any
state transitioning to another, as well as the probability of observing any
particular emission given any hidden state. These will later be defined in
terms of transition and emission matrices, and it will necessarily be true that
each entry in the matrix is non-negative and each row sums to 1 (i.e. the
matrix must be stochastic).. Finally, we will need to know the distribution
of initial states, that is, the probability that any given hidden state is the
first to occur.

Hidden Markov models also assume the Markov property discussed in sec-
tion 2.1, although the property must be slightly ammended to account for
the added complexity of HMMs.

Definition 3.1 (Markov Property for Hidden Markov Models). Let Σ =
{σ1, ..., σm} be a state space and let E = {ε1, ..., εn} be a set of emissions.
Let O,S = (O1 = o1, ..., OT = oT , S1 = s1, ..., ST = sT ) be a sequence of
hidden states and emissions with si ∈ Σ and oj ∈ E. Then if for O,S it is
true that
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P(St = st|St−1 = st−1, ..., S1 = s1, Ot−1 = ot−1, ..., O1 = o1)

=P(ST = st|St−1 = st−1)

and

P(Ot = ot|St = st, ..., S1 = s1, Ot−1 = ot−1, ..., O1 = o1)

=P(Ot = ot|St = st),

we say O,S possesses the Markov Property for Hidden Markov Models.

Definition 3.2. [8] A Hidden Markov Model can be characterized by five
components:

1. m - the total number of possible hidden states that can exist. Define
the set of all possible hidden states as Σ = {σ1, ..., σm}.

2. n - the total number of possible emissions that can be emitted from
hidden states in Σ. Define the set of all emissions as E = {ε1, ..., εn}.

3. TΣ = {aij = P(σi → σj)} for 1 ≤ i, j ≤ m - the transition likelihood
matrix describing the likelihood that state σi transitions to σj . Note
that this information is stored in a matrix for ease of use and read-
ability, but TΣ is not treated like a matrix, i.e. only single entries
are considered from it at a time. Also note that because the model
is assumed to possess the Markov property, the probability of tran-
sitioning from one state to another depends solely on the two states,
and not on any preceding sequence of states7.

4. TE = {bij = P(εj |σi)} for 1 ≤ i ≤ m and 1 ≤ j ≤ n - the emis-
sion likelihood matrix describing the likelihood that a hidden state
σi emits the observation εj . Again, this matrix is for ease of use and
readability. Furthermore, it is true that the likelihood of any emission
εj is observed is dependent solely on the current hidden state σi.

5. ~Π = {πi = P(S1 = σi)} where S1 is the first hidden state in the
sequence generated by the model for 1 ≤ i ≤ m.

Notationally, let λ = {~Π, TΣ, TE} represent the Hidden Markov Model. The
parameters m,n need not be included in this notation because they are im-
plicit in the definitions of TΣ and TE .

These five parameters are used to generate a sequence of random vari-
ables O representing observations such that O = {O1 = o1, ..., OT = oT }
where oi ∈ E and T represents the length of the sequence, along with a
sequence of random variables S representing hidden states such that S =
{S1 = s1, ..., ST = sT } with si ∈ Σ according to the following procedure:

7Also note that we are assuming for simplicity’s sake that the process is time-
homogeneous
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a. Pick a value s1 from Σ for S1 according to the initial distrubution

vector ~Π.
b. Choose an emission o1 from E for O1 according to the emission prob-

ability matrix TE .
c. Transition to a new state S2 = s2 according to the transition proba-

bility matrix TΣ.
d. Repeat steps b, c, advancing the index by one each time until OT = oT

is reached.

Now that we know what an HMM is, we are interested in finding the

probability of any coupling of sequences O,S given λ = {~Π, TΣ, TE}.

Claim 3.3 ([8]). Let λ = {TΣ, TE ,Π} define a Hidden Markov Model. Then
the probability of a given pair of observation and hidden state sequences O,S,
each of length T , is calculated as

P(O,S) = P(S1 = s1)P(O1 = o1|S1 = s1)

T∏
k=2

(
P(Sk = sk|Sk−1 = sk−1)P(Ok = ok|Sk = sk)

)
.

Proof. Consider that P(O,S) = P(O1 = o1, ..., OT = oT , S1 = s1, ..., ST =
sT ). For the sake of notational ease (and space), we will write only the
random variable Oi or Sj instead of Oi = oi or Sj = sj in this proof. Then
P(O,S) = P(O1, ..., OT , S1, ..., ST ). The first step in the proof is to recognize
that the Markov property allow and the definition of conditional probability
allow us to rewrite this:

P(O1, ..., OT , S1, ..., ST )

= P(OT |ST , ..., S1, OT−1, ..., O1)P(ST , ..., S1OT−1, ..., O1)

= P(OT |ST )P(ST , ..., S1, OT−1, ..., O1)

= P(OT |ST )P(ST |ST−1, ..., S1, OT−1, ..., O1)P(ST−1, ..., S1, OT−1, ..., O1)

= P(ST−1, ..., S1, OT−1, ..., O1)P(ST |ST−1)P(OT |ST ).8

Again, the Markov property allows us to further break up this sequence:

P(ST−2, ..., S1, OT−2, ..., O1)P(ST−1|ST−2)P(OT−1|ST−1)P(ST |ST−1)P(OT |ST ).

It follows that this process can be repeated until we are left with

P(O,S) = P(O1, S1)P(S2|S1)P(O2|S2)...P(ST |ST−1)P(OT |ST ).

However this is just

P(S1)P(O1|S1)

T∏
k=2

(
P(Sk|Sk−1)P(Ok|Sk)

)
,

which aside from notation is identical to what was stated in claim 3.2.
�
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We can immediately ask ourselves a few questions about HMMs:

i) How can an HMM be used in the context of passwords?
ii) How do we know the state transition and observation emission prob-

abilities?
iii) Given a sequence of observed emissions, how do we find the most

probable sequence of underlying states?
iv) If we don’t know much about our system, how do we know what

parameters to choose so that we can approximate the true underlying
model, given that we can’t observe the hidden states directly (we can’t
even be guaranteed we know how many or of what type they are)?

The first of these questions has no concrete answer, because an HMM could
potentially be applied to passwords in a variety of ways. For example, hid-
den states could be different types of words or sequences commonly used
in passwords, like names, nouns, places, etc. with associated observations
like “Alice,” “banana,” and “Paris.” Hidden states may also represent dif-
ferent sites where passwords are created, while the observations are actually
passwords generated at that site (for example, it’s not hard to imagine that
passwords associated with a botanical site are botanical in nature). Only
trial and error will show which applications of an HMM to passwords may
be most useful. The second question in contrast is fairly simple - we get an
approximation of these values the same way we found the similar matrix of
transition probabilities for a Markov chain, by using large data sets. The
third and fourth questions require significantly more work, and answering
them is the natural next step in trying to see how an HMM might be useful
in pursuit of this thesis’s goal.

3.2. Viterbi Algorithm. We now know how to talk about HMMs but we
are still left with unanswered questions as discussed in the previous section.
The first of these questions we’ll tackle is being able to find the most probable
sequence of hidden states given a sequence of emissions. At first glance, it
may be tempting to simply calculate the probability of all possible sequences
of hidden states given a sequence of observations, but this is an unwieldy
beast. Since our sequence of hidden states has length T and there are m
possible hidden states, there are mt total sequences for which we must calcu-
late the probability. While it’s hard to say exactly how difficult comparing
the likelihood of all sequences might be without explicitly defining the states
and the length of a sequence, it’s fairly easy to see how mT can grow very
quickly, even for small m. Instead, we use the Viterbi Algorithm to optimize
this process. The motivation is fairly straightforward; instead of calculating
the probability of all sequences up to a point, we care only about the most
probable sequence up to a point. By doing this, we greatly reduce the number
of sequences that require our attention.
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Claim 3.4. Given λ = {TΣ, TE ,Π} with m hidden states and some generated
sequence of emissions O = {O1 = o1, ..., OT = oT }, define

x1j = P(S1 = σj)P(O1 = o1|S1 = σj)

where σj ∈ Σ and o1 ∈ E, and define

xij = max{xi−1,1P(σ1 → σj)P(Oi = oi|Si = σj), ..., xi−1,mP(σm → σj)P(Oi = oi|Si = σj)}
for 2 ≤ i ≤ n and 1 ≤ j ≤ m. Further define Si as the hidden state that
maximizes {xi1, ..., xim} for 1 ≤ i ≤ n (i.e. Si = argmax{xi1, ..., xim}). Then
the generated sequence S = S1, ...,Sn is the sequence that maximizes the
overall likelihood of S given O, λ.

The following sketch of the proof that the Viterbi algorithm produces
what it claims to can be used to gain a good intuition as to why it is true.9

Consider the last hidden state and its associated observation in O,S. For
the last observation OT = oT , we know that there are m different possible
hidden states σj ∈ Σ for 1 ≤ j ≤ m that might have emitted oT , and
for each of these potential states there is some path terminating in σj that
maximizes probability up to that point. By studying both the probability
of the best path up to any given σj with the likelihood that σj emits the
observation oT , we can find the overall most probable path, or the sequence
S1 = s1, ..., ST = sT such that given O1 = o1, ..., OT = oT , the probability
P(S|O) is maximized. Pictorally, this looks like.10

Figure 5. Pictoral representation of the best path up to OT = oT

Hidden within this picture is an important detail that needs to be proven
before this can be taken as true.

9A full proof of the Viterbi algorithm’s correctness can be found in [2]
10The following pictoral representations were inspired by and adapted from [9]
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Claim 3.5. The sequence S1 = s1, ..., St+1 = σi that maximizes P(S1 =
s1, ..., St+1 = σi|O1 = o1, ..., Ot+1 = ot+1) for some σi comes from the se-
quence S1 = s1, ..., St = σj that maximizes P(S1 = s1, ..., St = σj |O1 =
o1, ..., Ot = ot) for some σj

11.

Proof. Assume otherwise. Then the sequence S1 = s1, ..., St+1 = σi that
maximizes P(S1 = s1, ..., St+1 = σi|O1 = o1, ..., Ot+1 = ot+1) comes from
something other than the sequence S1 = s1, ..., St = σj that maximizes
P(S1 = s1, ..., St = σj |O1 = o1, ..., Ot = ot). Namely, there is some sequence
S′1 = s′1, ..., S

′
t = σj such that P(S′1 = s′1, ..., S

′
t = σj |O1 = o1, ..., Ot = ot)

is not maximized, but such that P(S′1 = s′1, ..., S
′
t = σj , St+1 = σi|O1 =

o1, ..., Ot+1 = ot+1) is maximized. By construction P(S′1 = s′1, ..., S
′
t =

σj , St+1 = σi|O1 = o1, ..., Ot+1 = ot+1) = P(S′1 = s′1, ..., S
′
t = σj |O1 =

o1, ..., Ot = ot)P(σj → σi)P(Ot+1 = ot+1|St+1 = σi). However, this cannot
be maximum because there exists a sequence S1 = s1, ..., St = σj such that
P(S1 = s1, ..., St = σi|O1 = o1, ..., Ot = ot) > P(S′1 = s′1, ..., S

′
t = σj |O1 =

o1, ..., Ot = ot), which implies that P(S′1 = s′1, ..., S
′
t = σj |O1 = o1, ..., Ot =

ot)P(σj → σi)P(Ot+1 = ot+1|St+1 = σi) < P(S1 = s1, ..., St = σj |O1 =
o1, ..., Ot = ot)P(σj → σi)P(Ot+1 = ot+1|St+1 = σi), which is a contradic-
tion. Then it follows that the sequence S1 = s1, ..., St+1 = σi that maximizes
P(S1 = s1, ..., St+1 = σi|O1 = o1, ..., Ot+1 = ot+1) must come frome the
sequence S1 = s1, ..., St = σj that maximizes P(S1 = s1, ..., St = σj |O1 =
o1, ..., Ot = ot) for some σj �

Now all that remains is to actually find these best paths up to each σi ∈ Σ
that may have emitted oT . To do this, we step back one transition, so to
speak, because we know that each σi associated with oT was transitioned to
from some other σ ∈ Σ associated with oT−1. By doing this, we hope to find
which σ is the most probable previous step, given oT−1. Again, we can use
the following picture to understand this:

11This can be thought of as the most likely path through ot+1 must have its first t
entries be the most likely path through ot
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Figure 6. Pictoral representation of the best path up to
OT−1 = oT−1.

By iterating this process, we find the best path up to each point. It follows
then, that if we store only the most probable path up to each point (whose
probability is stored in the xi,j ’s) and we pick the most probable at each step,
we will have maximized the likelihood for S to occur given O. Retranslated
into our original language, this whole process can also be shown pictorally:

Figure 7. Finding the xi,j ’s.

3.3. Forward/Backward and Baum-Welch Algorithms. We are now
much better off than before because given a sequence of observed states,
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we have a recursive method to find the most probable sequence of hidden
states. However, this is only part of a picture that would be completed by
answering question iii) from 3.1. Namely, if we don’t know much about
the underlying system, there’s no easy way to learn about it because the
underlying states are unobserved. To remedy this situation, we can use the
Baum-Welch algorithm, which can be used to optimize our HMM parameters
in a way that tells us more about them. To understand the Baum-Welch
algorithm, understanding of two additional algorithms is first necessary.

3.3.1. Forward Algorithm. The Forward Algorithm (and for that matter the
Backward Algorithm) are slightly confusing in that their names almost seem
to be reversed. In the case of the Forward algorithm, it tells us the joint prob-
ability of seeing a sequence of observations prior to the current state being
some σi, or P(O1 = o1, ..., Ot = ot, St = σi). Even though the Forward Algo-
rithm looks at events that have already happened, it’s named appropriately
because the recursive method to find these probabilities iterates forward in
time, starting with t = 1 and ending at t = T .

Define αi(t) = P(O1 = o1, ..., Ot = ot, St = σi) for σi ∈ Σ. Then the
algorithm for finding P(O1 = o1, ..., Ot = ot, St = σi) as well as P(O|λ) – the
total probability of observing O relative to all possible S – is as follows:[8]

Algorithm 1 Forward Algorithm[8]

1. Let αi(1) = πibik, for 1 ≤ i ≤ m, where bik is the likelihood that the
hidden state si emits the observation o1 = εk ∈ E.

2. Compute αi(t + 1) = bik
∑m

j=1 αj(t)aji, for 1 ≤ t ≤ T − 1 and for
Ot+1 = εk.

3. Then P(O|λ) =
∑m

j=i αj(T ).

Proof. It must be shown that αi(t) = P(O1 = o1, ..., Ot = ot, St = σi) for all
1 ≤ t ≤ T and that P(O|λ) =

∑m
j=1 αj(T ). To do this, we will use induction.

♦ Base case: By definition αi(1) = πibik. Furthermore, P(O1 = o1, S1 =
σi) = P(S1 = σi)P(O1 = o1|S1 = σi), and since o1 = εk ∈ E, it follows
that P(O1 = o1, S1 = σi) = πibik. Then αi(1) = P(O1 = o1, S1 = σi).

♦ Inductive Assumption: Assume αj(t) = P(O1 = o1, ..., Ot = ot, St =
σj).

♦ Inductive Step: Consider P(O1 = o1, ..., Ot+1 = ot+1, St+1 = σi).
Because hidden states are disjoint, then by the distributive law for
sets we can rewrite P((St = σ1 ∪ ...∪ St = σm)∩ (O1 = o1, ..., Ot+1 =

ot+1, St+1 = σi)) which becomes P
((

(O1 = o1, ..., Ot+1 = ot+1, St+1 =
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σi)∩St = σ1

)
∪...∪

(
(O1 = o1, ..., Ot+1 = ot+1, St+1 = σi)∩St = σm

))
.

But this is just the following sum over j:

=

m∑
j=1

P(O1 = o1, ..., Ot = ot, St = σj , Ot+1 = ot+1, St+1 = σi).

By the definition of conditional probability, this tells us that

=

m∑
j=1

P(O1 = o1, ..., Ot = ot, St = σj)P(Ot+1 = ot+1, St+1 = σi|O1 = o1, ..., Ot = ot, St = σj),

and by the Markov property and the inductive assumption for αj(t),
we can rewrite this as

=
m∑
j=1

αj(t)P(Ot+1 = ot+1, St+1 = σi|St = σj).

However, since we know Ot+1 is dependent on only St+1 and St+1

depends only on St, the last term becomes P(Ot+1 = ot+1, St+1 =
σi|St = σj). But this is clearly just P(Ot+1 = ot+1|St+1 = σi)P(St+1 =
σi|St = σj), and since ot+1 equals some εk ∈ E, this can be rewritten
as

= bik

m∑
j=1

αj(t)aji.

Then P(O1 = o1, ..., Ot+1 = ot+1, St+1 = σi) = bik
∑m

j=1 αj(t)aji for

1 ≤ t ≤ T − 1, which is by definition αi(t+ 1).
Now it remains to show that

∑m
j=1 αj(T ) = P(O|λ). To do this,

we again use the fact that hidden states are disjoint to write∑m
j=1 αj(T ) = P

((
(O1 = o1, ..., OT = oT ) ∩ ST = σ1

)
∪ ... ∪

(
(O1 =

o1, ..., OT = oT )∩ ST = σm
))

= P
(
(ST = σ1 ∪ ...∪ ST = σm)∩ (O1 =

o1, ..., OT = oT )
)

= P(O). Since the HMM is parameterized by λ (ie
we are given λ), we write this as P(O).

�

3.3.2. Backward Algorithm. The Backward Algorithm, like the Forward Al-
gorithm, is concerned with a sequence of observations and a single hidden
state, although this time, we are interested in calculating the future proba-
bility of seeing the observation sequence ot+1, ..., oT given the starting hidden
state of St = σi.

Define βi(t) = P(Ot+1 = ot+1, ..., OT = oT |St = σi) for some σi ∈ Σ. Then
the algorithm for finding P(Ot+1 = ot+1, ..., OT = ot|St = σi is as follows:[8]
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Algorithm 2 Backward Algorithm[8]

1. Define βi(T ) = 1, for 1 ≤ i ≤ m
2. Compute βi(t) =

∑m
j=1 aijbjkβj(t+1), for t = T −1, T −2, ..., 1 where

ot+1 = εk ∈ E and 1 ≤ i ≤ m.

Proof. To prove that the algorithm works, it must be shown that βi(t) =
P(Ot+1 = ot+1, ..., OT = oT |St = σi) where σi ∈ Σ for all 1 ≤ t ≤ T − 1. To
do this we will use induction.

♦ Base case: By definition βi(T − 1) =
∑m

j=1 aijbjkβj(T ) which by

definition of βi(T ) is just
∑m

j=1 aijbjk. By writing this out∑m
j=1 P(ST = sT |ST−1 = σj)P(OT = εk|ST = σj) we can see that this

sum is the sum of all possible previous hidden states transitioning to
the current state ST = σj and the current observation being
OT = oT = εk for some εk ∈ E. Then it follows by total probability
that βi(T − 1) =

∑m
j=1 aijbjkβ(T ) = P(OT = ot|ST−1 = σi).

♦ Inductive Assumption Assume that βj(t+1) = P(Ot+2 = ot+2, ..., OT =
oT |St+1 = σj).

♦ Inductive Step Now consider P(Ot+1 = ot+1, ..., OT = oT |St = σi).
By the conditional probability law of total probability, we can write
this

m∑
j=1

P(Ot+1 = ot+1, ..., OT = oT |St = σi, St+1 = σj)P(St+1 = σj |St = σi),

which is just

m∑
j=1

P(Ot+1 = ot+1, ..., OT = oT |St = σi, St+1 = σj)aij .

We now use the fact that

m∑
j=1

P(Ot+1 = ot+1, ..., OT = oT |St = σi, St+1 = σj)aij

=

m∑
j=1

P(Ot+1 = ot+1 ∩ (Ot+2 = ot+2, ..., OT = oT )|St = σi, St+1 = σj)aij

=

m∑
j=1

P(Ot+1 = ot+1|St = σi, St+1 = σj)P(Ot+2 = ot+2, ..., OT = oT |St = σi, St+1 = σj)aij .
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Then by the Markov property,

=
m∑
j=1

P(Ot+1 = ot+1|St+1 = σj)P(Ot+2 = ot+2, ..., OT = oT |St+1 = σj)aij ,

and by our assumption that βj(t + 1) = P(Ot+2 = ot+2, ..., OT =
oT |St+1 = σj) and because ot+1 = εk ∈ E, this is just∑m

j=1 aijbjkβj(t+ 1). But this is by definition βi(t), and so it is true

that βi(t) =
∑m

j=1 aijbjkβj(t+ 1)

�

3.3.3. Baum-Welch Algorithm. The Forward and Backward algorithms aren’t
entirely useful on their own, but when combined they give important insight
that is used in the Baum-Welch algorithm. To begin, we will define two vari-
ables whose purposes will become evident shortly: γi(t) = P(St = σi|O) and
ζij(t) = P(St = σi, St+1 = σj |O). Immediately we are interested in relating
these to known values in our HMM.

Claim 3.6. The variable γi(t) is related to the Forward and Backward vari-
ables according to the following:

γi(t) =
αi(t)βi(t)∑m
i=1 αi(t)βi(t)

Proof. Consider γi(t) = P(St = σi|O). By the definition of conditional prob-
ability, this can be rewritten as

γi(t) =
P(O1 = o1, ..., Ot = ot, St = σi, Ot+1 = ot+1, ..., OT = oT )

P(O)
.

Again, using the laws of conditional probability, we can further rewrite this
as

γi(t) =
P(O1 = o1, ..., Ot = ot, St = σi)P(Ot+1 = ot+1, ..., OT = oT |O1 = o1, ..., Ot = ot, St = σi)

P(O)
.

Again by the Markov property for HMMs, this can be further reduced to

γi(t) =
P(O1 = o1, ..., Ot = ot, St = σi)P(Ot+1 = ot+1, ..., OT = oT |St = σi)

P(O)
,

which by definition is just
αi(t)βi(t)

P(O)
.

Now consider the sum
∑m

i=1 αi(t)βi(t). As we just showed, this is equivalent
to the sum

m∑
i=1

P(O1 = o1, ..., Ot = ot, St = σi, Ot+1 = ot+1, ..., OT = oT ).
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But this is just

m∑
i=1

P
(
(O1 = o1, ..., OT = oT ) ∩ (St = σi)

)
,

which can be rewritten using the conditional probability law of total proba-
bility as

m∑
i=1

P(O1 = o1, ..., OT = oT |St = σi)P(St = σi)

=P(O1 = o1, ..., OT = oT ).

Hence,

γi(t) = P(St = σi|O) =
αi(t)βi(t)∑m
i=1 αi(t)βi(t)

.

�

Claim 3.7. The variable ζij(t) is related to the Forward and Backward vari-
ables according to the following:

ζij(t) =
αi(t)aijbjkβj(t+ 1)

P(O)

where bikis the likelihood that ot+1 = εk given St+1 = σi.

Proof. Consider ζij(t) = P(St = σi, St+1 = σj |O). By the definition of condi-
tional probability, this can be rewritten as

ζij(t) =
P(O1 = o1, ..., Ot = ot, St = σi, St+1 = σj , Ot+1 = ot+1, ..., OT = oT )

P(O)
.

Again, by the laws of conditional probability this can be further rewritten as

P(O1 = o1, ..., Ot = ot, St = σi)P(St+1 = σj , Ot+1 = ot+1, ..., OT = oT |O1 = o1, ..., Ot = ot, St = σi)

P(O)
,

which by the Markov property is just

αi(t)P(St+1 = σj , Ot+1 = ot+1, ..., OT = oT |St = σi)

P(O)
.
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This can be further rewritten (switching to our shorthand so it fits better in
the margins):

=
αi(t)P(St+1 = σj , Ot+1|St = σi)P(Ot+2, ..., OT |St+1 = σj , St = σi, Ot+1)

P(O)

=
αi(t)P(St+1 = σj , Ot+1|St = σi)P(Ot+2, ..., OT |St+1 = σj)

P(O)

=
αi(t)P(St+1 = σj |St = σi)P(Ot+1|St = σi, St+1 = σj)P(Ot+2, ..., OT |St+1 = σj)

P(O)

=
αi(t)aijP(Ot+1|St+1 = σj)βj(t+ 1)

P(O)

=
αi(t)aijbjkβj(t+ 1)

P(O)
.

�

Finally, it will be beneficial to relate γi(t) to ζij(t).

Claim 3.8.

γi(t) =
m∑
j=1

ζij(t).

Proof. Consider that by definition ζij(t) = P(St = σi, St+1 = σj |O). Already,
this almost looks like γi(t) = P(St = σi|O), aside from the St+1 = σj term.
As we have done previously, we will try summing over j to get rid of this
term:

m∑
j=1

ζij(t) =
m∑
j=1

P(St = σi, St+1 = σj |O)

=
m∑
j=1

P(O1 = o1, ..., OT = oT , St = σi, St+1 = σj)

P(O)
.

By the conditional probability law for total probability:

=

m∑
j=1

P(O1 = o1, ..., OT = oT , St = σi|St+1 = σj)P(St+1 = σj)

P(O)

=
P(O1 = o1, ..., OT = oT , St = σi)

P(O)

=P(St = σi|O)
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Hence,

γi(t) =
m∑
j=1

ζij(t).

�

We now move on to tackling iv) from section 3.1. Up until now, everything
has been done with the assumption that we are given a Hidden Markov Model

λ = {TΣ, TE , ~Π}. However, unless we have created our own model from
scratch, the underlying HMM describing real world events is likely hidden
from us, and we must find some way to reasonably discover or approximate

the true HMM. Namely, our goal is to find some λ̄ = {T̄σ, T̄E , ~̄Π} with pre-
chosen values n,m (which we must pick based on available knowledge of the
underlying system) such that given a sequence of observations O = {O1 =
o1, ..., OT = oT }, the likelihood of O is maximized. In other words, we

seek to find the model λ̄ = {T̄σ, T̄E , ~̄Π} that most closely approximates the
true underlying Hidden Markov Model. This is done heuristically using the
Baum-Welch algorithm:

Algorithm 3 Baum-Welch Algorithm[8][1]

1. Given a sequence of observations O, choose a reasonable model

λ = {TΣ, TE , ~Π} to describe the underlying HMM.
2. Define a maximum number of iterations, lmax and set a counter

variable l = 1.
3. Define λ̄ = {T̄σ, T̄E , ~̄Π} as follows:

a) Let ~̄Π = {πi = γi(1)} for 1 ≤ i ≤ m.

b) Let T̄Σ =

{
aij =

∑T−1
t=1 ζij(t)∑T−1
t=1 γi(t)

}
.

c) Let T̄E =

{
bij =

∑T
t=1 γi(t) s.t. Ot=εj∑T

t=1 γi(t)

}
.

4. Let l = l + 1 and

• if l < lmax and P(O|λ̄) > P(O|λ), let λ = λ̄. Return to 3.
• else terminate.

—————————————————————————————————–

Baum et al showed that it is always true that either P(λ̄) = P(λ) or that
P(λ̄) > P(λ), and so either our new approximation of the HMM is better
than the previous, or it is at least a local maximum.[8, pg. 256] To justify

this, consider the fact that we want to find a better estimate for TΣ, TE , ~Π
that takes into account the actual sequence of observations we can access,
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as naturally a model estimate that uses more of the available information

will be better. In the case of reestimating ~Π with the values of γi(1), the
justification is clear because γi(1) = P(S1 = σi|O), which is essentially adding

an awareness of O to our initial definition of ~Π.
To justify why T̄Σ is a better estimate for TΣ, we will take entries aij in TΣ

and relate them to ζij(t) and γi(t). First, though, note that aij = P(St+1 =
σj |St = σi) for all 1 ≤ t ≤ T − 1 because our model is time independent.
Then we can rewrite

aij = aij

∑T−1
t=1 P(St = σi)∑T−1
t=1 P(St = σi)

=
aijP(S1 = σi) + ...+ aijP(ST−1 = σi)∑T−1

t=1 P(St = σi)

=
P(S2 = σj |S1 = σi)P(S1 = σi) + ...+ P(ST = σj |ST−1 = σi)P(ST−1 = σi)∑T−1

t=1 P(St = σi)
(by time ind.)

=
P(S1 = σi, S2 = σj) + ...+ P(ST−1 = σi, ST = σj)∑T−1

t=1 P(St = σi)
(by conditional probability)

=

∑T−1
t=1 P(St = σi, St+1 = σj)∑T−1

t=1 P(St = σi)

However, note that by definition, ζij(t) = P(St = σi, St+1 = σj |O) and
γi(t) = P(St = σi|O), so if we want our estimation of aij to take into account
the sequence of observations O, it makes sense to replace the previous sum
with ∑T−1

t=1 ζij(t)∑T−1
t=1 γi(t)

.

Finally, to justify why T̄E is a better estimate for TE , we consider a similar
explanation:

bij = bij

∑T
t=1 P(St = σi)∑T
t=1 P(St = σi)

=
bijP(S1 = σi) + ...+ bijP(ST = σi)∑T

t=1 P(St = σi)

=
P(O1 = εj |S1 = σi)P(S1 = σi) + ...+ P(OT = εj |ST = σi)P(ST = σi)∑T

t=1 P(St = σi)

=

∑T
t=1 P(Ot = εj |St = σi)P(St = σi)∑T

t=1 P(St = σi)
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However, it is not true for all observations in O that Ot = εj , which means
that some entries in this sum are 0, and so they may be omitted. The moving
along we get

=

∑T
t=1 s.t. Ot=εj

P(Ot = εj |St = σi)P(St = σi)∑T
t=1 P(St = σi)

=

∑T
t=1 s.t. Ot=εj

P(Ot = εj , St = σi)∑T
t=1 P(St = σi)

,

and since we are only summing over indeces where Ot = εj , this is just∑T
t=1 s.t. Ot=εj

P(St = σi)∑T
t=1 P(St = σi)

.

Again, by definition γi(t) = P(St = σi|O), which we take to be a better
approximation because it encodes more given information, so we can rewrite
this sum simply as ∑T

t=1 s.t. Ot=εj
γi(t)∑T

t=1 γi(t)
.

It should be noted that the better the initial guess for λ is, the more likely
λ̄ is a good approximation of the the underlying HMM.

We can now use the Viterbi and Baum-Welch algorithms to analyze pass-
words, which will be discussed in section 4.

4. Application with Concluding Comments

In this section, several large training sets of real-world passwords will be
used to train and implement the various Markov chains discussed in this the-
sis. While building an actual program to use these in bruteforcing is beyond
the scope of this paper, the Markov chains will be used to verify our initial
intuition that some passwords are more likely to be used by humans than
others, which should be reflected by having a higher overall probability. The
training sets used include the “rockyou.txt,” and “myspace.txt,” password
sets, along with a conglomerate password set “AntiPublic.” Respectively,
these contain roughly 32 million, 427 million, and 562 million passwords
each.12

12Although in the Markov chains with memory section, Antipublic was not used because
the program for calculating the transition matrix was expected to take over 4 days to run
due to the author’s very limited computing power on a single core intel i5 processor with
only 8 gigabytes of ram
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4.1. Application of Standard Markov Chains. One way to check that
a Markov chain is appropriate for modeling passwords is to try feeding one
a few different passwords. In section 1, it was claimed that intuitively, the
password “Kittycat123!” is much more likely to be a real password than
“0k@#Hckpdz%5.” Then assuming passwords can be appropriately mod-
eled by Markov chains, we can calculate the actual probabilities of these and
several other passwords. In addition to these two passwords, we will try
calculating the probabilities of observing a password the author created ac-
cording to a common password creation scheme - “P455w0rd123!,” along with
a password that was randomly generated by the LastPass random password
generator with input paramaters “12 characters,” “Upper and Lowercase,”
“Minimum of 3 numbers,” and “Special characters” - “z8U73*!mg@5S.” Be-
low is a table of probabilities according to the different training sets for a
standard Markov chain:

Password Set “Kittycat123!” “0k@#Hckpdz%51” “P455w0rd123!” “z8U73*!mg@5S”
Rockyou 4.13505573575e-18 2.68083451418e-29 1.67240191453e-22 7.38680466769e-31
Myspace 13 3.78308960169e-17 0 0 0
Antipublic 2.00339243244e-17 4.08860633509e-30 1.54299616379e-20 6.48580541618e-30

These numbers verify what we had hoped they would – we can see clearly
that the password “Kittycat123!” is clearly the most likely by orders of
magnitude. Moreover, “P455w0rd123!,” which was created using the word
“Password” and switching several letters to their digit look-alikes, also has
relatively high probability when compared to the random strings. This con-
firms that the transitions taking place in it must be semi-frequent, which
may be explained by the Markov model reflecting some common underlying
password creation trends (although this conclusion cannot be outright de-
termined, and in fact comparing “P455W0rd123!” with similar 12-character
passwords that end in “123!” show that that Markov model may only be
expressing the overall quantity of lowercase, uppercase, numbers and special
characters, which are in general the most deterministic feature of a password’s
security).

4.2. Application of Markov Chains with Memory. Again, we hope to
use Markov chains, this time implemented with m = 2 (due to computational
power limitations14), to test some of our intuition about passwords.

Password Set “Kittycat123!” “0k@#Hckpdz%5” “P455w0rd123!” “z8U73*!mg@5S”
Rockyou 4.00211562786e-15 3.84742041879e-28 8.02964469332e-19 0
Myspace 1.5847060339e-13 0 0 0

14Here the Antipublic data set is not included because the program used to estimate
the transition matrix, slated to run just shy of 4 days, never had an uninterupted chance
to terminate.
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Once more, these numbers add to the growing body of evidence that our
intuitions may have been correct: we see that “Kittycat123!” is by far the
most probable, with the pattern-constructed password “P455w0rd123!” com-
ing in at second, the human generated password coming in at third, and the
randomly generated password having undefined probability.

We now move on to see whether Markov chains with memory are more
capable of telling us that a password like abracadabra is more likely than a
password like abracadabrd. Essentially, we are hoping that adding memory to
the Markov chain gives the chain a better chance at picking up on patterns
in passwords (because, after all, you have to remember what has already
been established to explain a pattern). Several different types of passwords
containing some form of clearly identifiable pattern15 can then be created, and
then these passwords can be tested against the pattern applied incorrectly:

P(abracadabra) = 1.69594044414e −
13
P(abracadabrd) = 1.89324641898e −
1516

P(abcdefgh) = 2.19587965676e− 11
P(fadhebgc) = 3.69930437095e− 13

P(123456789) = 2.77509528407e− 07
P(918273645) = 9.40000283098e− 11
P(a1b2c3d4e5) = 1.98899504362e−17
P(a3b1c5d2e4) = 9.00789930584e−22

In each and everyone of these cases, what was hoped for is verified: in-
troducing memory into the Markov chain allows the model to more suitably
rank passwords based on their exhibition of a logical pattern.

4.3. Application of Indexed Markov Chains. Our final implementation
of Markov chains helps further confirm our intuition:

Password Set “Kittycat123!” “0k@#Hckpdz%51” “P455w0rd123!” “z8U73*!mg@5S”
Rockyou 3.92008464899e-16 4.45807250796e-30 2.969286342653-21 1.48144894008e-32
Myspace 0 0 0 0
Antipublic 9.8544938451e-16 1.10863834593e-29 2.88716532716e-18 4.42802425092e-31

Yet again we see that the password we would expect to have the highest
probability does in fact have the highest by several orders of magnitude. The
pattern-constructed password has the second, the human generated password
is third, and the random password is fourth.

15Identifying the pattern and its jumbled variant is left as an exercise for the reader.
16In this case, replacing the final letter with anything that also commonly occurs after

the cluster of letters “br”, such as the letter e will cause the difference between these two
passwords to shrink. As the length of memory is increased, one would expect the difference
in probability between these two passwords to grow regardless of the character placed at
the end.
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While nothing can be determined conclusively about these passwords using
any of the Markov chains discussed so far, these numbers present a persua-
sive argument that Markov chains do in fact model some of the underlying
password creation trends we had hoped they would. To be more conclusive,
one would have to be very careful about the passwords that were compared,
controlling for the total number of different types of characters, the likelihood
of the different special characters (for example, a “!” is much more likely in
a password than a “%” and so any two similarly constructed passwords, one
whose only special character is “!” and the other whose only special char-
acter is “%”, will likely have very different probabilities, even though the
underlying password creation technique is the same) and so on.

One application of these various models not discussed so far is checking
that a user’s password is secure. Since ideally a bruteforce password attack
would prioritize more likely passwords, it makes sense to choose passwords
with lower probabilities according to these models. Effectually, a password
with lower probability should have a better chance of withstanding a brute-
force attack, especially one based on any of the models discussed in this
paper.

Now it has also been mentioned that an indexed Markov chain should
confirm a trend we observe in passwords – namely that special characters
are more likely to occur at the end of passwords. We can then construct
passwords to see whether or not this is the case. We will start by testing
against the passwords

(aaaaaaa!, aaaaaa!a, aaaaa!aa, aaaa!aaa, aaa!aaaa, aa!aaaaa, a!aaaaaa).

Note that with these passwords, aside from the first, there are the same
number of each type of transition (ie there are 5 × a → a, 1 × a →!, and
1×! → a). The reason we include the first password in this set (which has
6 × a → a, 1 × a →!, and no ! → a) is because we still want it to be true
that “!” appears at the end of the password, so we check this case. Finally,
the reason we do not check the password !aaaaaaa is because this changes
the value for the initial distribution, and we already assume that “!” is less
likely to occur at the beginning of a password from observation. We can now
check the assumption (here we use only the largest training set, AntiPublic):

P(aaaaaaa!) = 6.60864029259e− 16
P(aaaaaa!a) = 5.30792802652e− 16
P(aaaaa!aa) = 3.22422594458e− 16
P(aaaa!aaa) = 3.79525129385e− 17

P(aaa!aaaa) = 1.8899437618e− 17
P(aa!aaaaa) = 8.09724163596e− 18
P(a!aaaaaa) = 4.16366090077e− 17

This trend, which shows that the probability steadily decreases as “!” is
moved forward in the password, confirms that indexed Markov chains are bet-
ter at capturing trends we observe in real passwords than standard Markov
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chains, because all of the passwords aside from the aaaaaaa!, when analyzed
with a standard Markov chain, would show the same probability (which is
2.22404415478e− 16) since they have the same number of each type of tran-
sition.

It is worth noting that this trend does not seem to appear as strongly when
the same password is tested with different special characters. For example,
when the special character “%” is used, we get the following probabilities:

P(aaaaaaa%) = 4.30348662538e− 18
P(aaaaaa%a) = 5.53865676248e− 18
P(aaaaa%aa) = 3.99697153743e− 18
P(aaaa%aaa) = 1.51732474001e− 18

P(aaa%aaaa) = 2.40811900998e− 18
P(aa%aaaaa) = 1.64874136141e− 18
P(a%aaaaaa) = 9.09272690323e− 19

This indicates that when people use “%”, the character is more evenly
spread throughout passwords.

Another interesting observation is the distribution of the “ ” symbol in
passwords. Since “ ” is commonly used to represent a space between words,
it should make sense that this symbol should be most frequent neither at the
beginning or the end of passwords, but somewhere in the middle. This can
be seen using an indexed Markov chain17:

P(aaaaaaaaaaa ) = 7.41528683e−23
P(aaaaaaaaaa a) = 1.88956268e−22
P(aaaaaaaaa aa) = 1.39673956e−22
P(aaaaaaaa aaa) = 1.18356981e−22
P(aaaaaaa aaaa) = 1.37423799e−22
P(aaaaaa aaaaa) = 1.33752753e−22

P(aaaaa aaaaaa) = 1.34840427e−22
P(aaaa aaaaaaa) = 7.22417620e−23
P(aaa aaaaaaaa) = 2.96022951e−23
P(aa aaaaaaaaa) = 2.79106433e−23
P(a aaaaaaaaaa) = 2.09277982e−23

Again, in this case we see a moderate bias towards “ ” being found towards
the middle of passwords

4.4. Application of Hidden Markov Models. A coded implementation
of HMMs is beyond the scope of this paper for several reasons. First, an HMM
could be run on the level of single characters, but it is unlikely that this would
reveal new information (although it has the potential to) beyond the already
known fact that there are hidden states “lowercase,” “uppercase,” “numbers”
and “special characters” whose observations are the sets that comprise each
of these categories. What would be more interesting is running an HMM at a
higher level, for example, having it examine the words stop sequences18 used
in passwords. This becomes much more difficult because the HMM will have

17Here, longer passwords are used with the assumption that passwords containing a “ ”
representing a space are made of shorter words, increasing the overall length

18A stop sequence is a common string that is used at the end of passwords. For example,
the stop sequence used in the previous section for two passwords was “123!”
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to be told what valid “words” and stop sequences are, which requires large
dictionaries consisting of predetermined values. Moreover, one would expect
that a sequence like “P455w0rd” should count as a word, since it represents
“Password” with several switched characters, but clearly this sequence will
not be found in any dictionary list. It becomes an issue then of how to
define the “words” the HMM can examine. Even so, in the case that an
HMM were looking at transitions between words and stop sequences, some
hypothetical hidden states could be some of the categories discussed in [3],
such as place names, people names, dictionary words, email addresses, double
words, etc. By running an HMM using the discussed algorithms against
a large list of real passwords, one would hope to more precisely identify
the underlying methods people use in creating their passwords, which in
turn could be reflected in some type of bruteforce algorithm that prioritizes
passwords that follow similar creation logic.
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Appendices

A. Python Code

A.1. Python code used to approximate standard Markov chain tran-
sition matrix of a password set. Please be forewarned that the author of
this thesis is not a “coder,” and as such the following code may not adhere to
professional written code standards. The following code was also not cleaned
to remove commented-out sections that were not used. Further note that the
formatting has caused the title of each index to be found at the bottom of
the page.

"""
Finding the Transition matrices for my password databases

"""
import numpy as np
import random as rm
import csv
from collections import Counter
def markov(x):

with open(x, "r") as database:
charspace = 

["A","B","C","D","E","F","G","H",'I','J','K','L','M','N','O','P','Q','R','S','T','
U','V','W','X','Y','Z','a','b','c','d','e','f','g','h','i','j','k','l','m','n','o'
,'p','q','r','s','t','u','v','w','x','y','z','1','2','3','4','5','6','7','8','9','
0','!','@','#','$','%','^','&','*','(',')','-','_','+','=','.','[',']','{','}','|'
,'`','~',';',':',"'",'"','<',',','>','/','?',' ']

#print charspace
# The following commented out section could be used to build the 

character space beyond what is included here.
"""
charspace2 = []
T = []
Pi = []
for i in database:

for j in i:
if str(j) not in charspace and str(j) not in charspace2:

charspace2.append(str(j))

charspace = charspace + charspace2
print charspace
size_of_char = 0
for i in charspace:

size_of_char += 1
print size_of_char
#print charspace
"""
trans = [] #matrix that defines state transitions
#temporary matrix used to build trans
for i in range(93):

temptrans = []
counter = 0
while counter <=93:

temptrans.append(str(charspace[i])+str(charspace[counter]))
counter +=1

trans.append(temptrans)

"""
Now we want to get T
"""

T = []
for i in range(94):

tempT = []
for j in range(94):

tempT.append(0)
T.append(tempT) #T is now a 93x93 matrix
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#print T
#Now to add values to T
progress = 0
for i in database:

#print i
#Now check that i has no forbidden characters.
counter = 0
for j in i:

if str(j) not in charspace:
#print j
counter +=1

if counter >1: #each line has a hidden character used to signal 
next line that's not in charspace. We need counter>1

continue
else:

counter = 0
for j in i[0:-2]:

#check the pair j,j+1. Add a 1 to the "j"th column of
T

T[charspace.index(str(j))][charspace.index(i[counter 
+ 1])] +=1

counter +=1
progress +=1
print "Progress = " + str(float(progress)/float(562000000) * 100)

+ "for Antipublic"

# T is still just a matrix of "total transitions" and we need to turn 
them into probabilities

counti = 0
#Lets find the sum of the rows to get a denominator
sumofrow = 0

for i in T:
sumofrow=0
for j in i:

sumofrow = int(j) + sumofrow
#print sumofrow
countj = 0
for j in i:

if sumofrow >= 1:
T[counti][countj] = float(j)/float(sumofrow) #To find

percentages. Note counti and countj are needed because i,j cannot be indeces
#print T[counti][countj]
countj +=1

elif sumofrow == 0:
T[counti][countj] = 0 #To find percentages. Note 

counti and countj are needed because i,j cannot be indeces
#print T[counti][countj]
countj +=1

counti +=1

#Double check to make sure the rows sum to 1
counti = 0
for i in T:

counti = 0
print sum(T[counti])
counti+=1
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with open(x+"_T.csv", "wb") as f:
    writer = csv.writer(f)
    writer.writerows(T)

print "Done with T for " + x

markov("anti_stripped_562_mil.txt")
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A.2. Python code to approximate standard initial distribution vec-
tor of a password set.

"""
Finding Pi for txt files

"""

import numpy as np
import random as rm
import csv
from collections import Counter
def markov(x):

with open(x, "r") as database:
charspace = 

["A","B","C","D","E","F","G","H",'I','J','K','L','M','N','O','P','Q','R','S','T','
U','V','W','X','Y','Z','a','b','c','d','e','f','g','h','i','j','k','l','m','n','o'
,'p','q','r','s','t','u','v','w','x','y','z','1','2','3','4','5','6','7','8','9','
0','!','@','#','$','%','^','&','*','(',')','-','_','+','=','.','[',']','{','}','|'
,'`','~',';',':',"'",'"','<',',','>','/','?',' ']

Pi = [] 
for i in charspace:

Pi.append(0)

##################################################################################
###########################################

numofpswd = 0 #Our denominator will be the total number of passwords
for i in database:

#Now check that i has no forbidden characters.

counterpi = 0
for j in i:

if str(j) not in charspace:

counterpi +=1

if counterpi >1: #each line has a hidden character used to signal
next line that's not in charspace. We need counter>1

continue
elif i[0] not in charspace:

if len(i)>1: #Some lines appear to be blank? Not sure 
what's going on here.

Pi[charspace.index(i[1])] += 1
numofpswd +=1

else:
Pi[charspace.index(i[0])] += 1
numofpswd +=1

counterpi2 = 0
for i in Pi:

Pi[counterpi2] = float(i)/float(numofpswd)
counterpi2 +=1
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#print sum(Pi) #Pi sums to 1, it's probably good
#print Pi
with open(x+"_Pi.csv", "w") as f:

    for j in Pi:
    f.write(str(j))
    f.write(",")
    f.close()
    print "Done with Pi for " + x
    
    
#markov("rockyou.txt")
#markov("myspace.txt")
markov("anti_stripped_562_mil.txt")
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A.3. Python code to approximate transition matrix for Markov
chain with memory 2.

"""
Finding T matrix for Markov Chain with memory = 2
"""

import numpy as np
import random as rm
import csv
from collections import Counter

def markov_mem_T(x):
with open(x, "r") as database:

charspace = 
["A","B","C","D","E","F","G","H",'I','J','K','L','M','N','O','P','Q','R','S','T','
U','V','W','X','Y','Z','a','b','c','d','e','f','g','h','i','j','k','l','m','n','o'
,'p','q','r','s','t','u','v','w','x','y','z','1','2','3','4','5','6','7','8','9','
0','!','@','#','$','%','^','&','*','(',')','-','_','+','=','.','[',']','{','}','|'
,'`','~',';',':',"'",'"','<',',','>','/','?',' ']

memory_matrix = [] #This will eventually be the matrix with our 
couplets

for i in charspace:
for j in charspace:

memory_matrix.append(i+j) #This creates said matrix.

trans = []
for i in range(8836):

trans.append([])
for i in trans:

for j in range(94):
i.append(0)

"""
trans = [] #we need to build a 94^2x94 matrix
for i in range(8836):

trans.append([])

empty_94 = [] #we create an empty matrix with 94 spots, one for each 
character

for i in range(94):
empty_94.append(0)

counter = 0
for i in trans: #fill all the rows with 94 empty spots

trans[counter] = empty_94
counter +=1
"""

progress = 0
for i in database:

counter = 0
for j in i:

if str(j) not in charspace:
#print j

counter +=1
if counter >1: #each line has a hidden character used to signal 

next line that's not in charspace. We need counter>1
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continue

elif len(i)>3:
counter = 0
length = len(i)
temp_mem = []
while counter < length - 2: #-2 bewcause we need to ignore 

the new line character
temp_mem.append(i[counter]+i[counter+1]) #We now have

a matrix that has all our clusters
counter += 1

#print temp_mem
temp_mem_length = 0
for j in temp_mem:

temp_mem_length +=1
#print temp_mem_length
counter = 0
for j in temp_mem:

if counter < temp_mem_length -1:
#print j
#print matrix.index(i)
#print temp_mem[counter +1][1]
#print charspace.index(temp_mem[counter + 1]

[1])
trans[memory_matrix.index(j)]

[charspace.index(temp_mem[counter + 1][1])] = trans[memory_matrix.index(j)]
[charspace.index(temp_mem[counter + 1][1])] +1

counter +=1
progress +=1
print str(float(progress)/float(562000000) * 100) +"% if you're 

doing antipublic"
print trans

#Now we need to sum the rows and then divide each entry by the sum
counti = 0
for i in trans:

sumofrow = 0
for j in i:

sumofrow = sumofrow +int(j)
countj = 0
for j in i:

if sumofrow >= 1:
trans[counti][countj] = float(j)/float(sumofrow) #To 

find percentages. Note counti and countj are needed because i,j cannot be indeces
#print T[counti][countj]
countj +=1

elif sumofrow == 0:
trans[counti][countj] = 0 #To find percentages. Note 

counti and countj are needed because i,j cannot be indeces
#print T[counti][countj]
countj +=1

counti +=1
#double check that each row sums to 1
counti = 0
for i in trans:
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continue

elif len(i)>3:
counter = 0
length = len(i)
temp_mem = []
while counter < length - 2: #-2 bewcause we need to ignore 

the new line character
temp_mem.append(i[counter]+i[counter+1]) #We now have

a matrix that has all our clusters
counter += 1

#print temp_mem
temp_mem_length = 0
for j in temp_mem:

temp_mem_length +=1
#print temp_mem_length
counter = 0
for j in temp_mem:

if counter < temp_mem_length -1:
#print j
#print matrix.index(i)
#print temp_mem[counter +1][1]
#print charspace.index(temp_mem[counter + 1]

[1])
trans[memory_matrix.index(j)]

[charspace.index(temp_mem[counter + 1][1])] = trans[memory_matrix.index(j)]
[charspace.index(temp_mem[counter + 1][1])] +1

counter +=1
progress +=1
print str(float(progress)/float(562000000) * 100) +"% if you're 

doing antipublic"
print trans

#Now we need to sum the rows and then divide each entry by the sum
counti = 0
for i in trans:

sumofrow = 0
for j in i:

sumofrow = sumofrow +int(j)
countj = 0
for j in i:

if sumofrow >= 1:
trans[counti][countj] = float(j)/float(sumofrow) #To 

find percentages. Note counti and countj are needed because i,j cannot be indeces
#print T[counti][countj]
countj +=1

elif sumofrow == 0:
trans[counti][countj] = 0 #To find percentages. Note 

counti and countj are needed because i,j cannot be indeces
#print T[counti][countj]
countj +=1

counti +=1
#double check that each row sums to 1
counti = 0
for i in trans:
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A.4. Python code to approximate initial distribution vector for a
Markov chain with memory.

"""
Finding the T Matrix for a Markov Chain with memory = 2

"""
import numpy as np
import random as rm
import csv
from collections import Counter

def markov_mem_2(x):
with open(x, "r") as database:

charspace = 
["A","B","C","D","E","F","G","H",'I','J','K','L','M','N','O','P','Q','R','S','T','
U','V','W','X','Y','Z','a','b','c','d','e','f','g','h','i','j','k','l','m','n','o'
,'p','q','r','s','t','u','v','w','x','y','z','1','2','3','4','5','6','7','8','9','
0','!','@','#','$','%','^','&','*','(',')','-','_','+','=','.','[',']','{','}','|'
,'`','~',';',':',"'",'"','<',',','>','/','?',' ']

memory_matrix = [] #This will eventually be the matrix with our 
couplets

for i in charspace:
for j in charspace:

memory_matrix.append(i+j) #This creates said matrix.

Pi = [] 
for i in memory_matrix:

Pi.append(0) #Create a bunch of empty spaces - one for each entry
in memory_matrix

##################################################################################
###########################################

numofpswd = 0 #Our denominator will be the total number of passwords
counter = 0
progress = 0
for i in database:

#Now check that i has no forbidden characters.

counterpi = 0
for j in i:

if str(j) not in charspace:
counterpi +=1

if counterpi >1: #each line has a hidden character used to signal
next line that's not in charspace. We need counter>1

counter +=1
continue

elif i[0] not in charspace:
if len(i)>3: #Some lines appear to be blank? Not sure 

what's going on here.
temp_mem = i[1]+i[2]
print temp_mem
Pi[memory_matrix.index(temp_mem)] += 1
numofpswd +=1

elif len(i) >2:
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temp_mem = i[0]+i[1]

Pi[memory_matrix.index(temp_mem)] += 1
numofpswd +=1

counter +=1
#print counter
progress +=1
print "Progress = " +str(float(progress)/float(562000000) * 100) 

+ "for antipublic "

#print numofpswd
#print Pi

counterpi2 = 0
for i in Pi:

Pi[counterpi2] = float(i)/float(numofpswd)
counterpi2 +=1

#print sum(Pi) #Pi sums to 1, it's probably good
#print Pi
with open(x+"_mem_Pi.csv", "w") as f:

for j in Pi:
f.write(str(j))
f.write(",")

f.close()
print "Done with Pi for " + x

#markov_mem_2("rockyou.txt")
markov_mem_2("anti_stripped_562_mil.txt")
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A.5. Python code to approximate transition matrices for an indexed
Markov chain.

"""
Finding indexed Transition matrices
"""

import numpy as np
import random as rm
import csv
from collections import Counter
def markov_indexed_T(x):

with open(x, "r") as database:
charspace = 

["A","B","C","D","E","F","G","H",'I','J','K','L','M','N','O','P','Q','R','S','T','
U','V','W','X','Y','Z','a','b','c','d','e','f','g','h','i','j','k','l','m','n','o'
,'p','q','r','s','t','u','v','w','x','y','z','1','2','3','4','5','6','7','8','9','
0','!','@','#','$','%','^','&','*','(',')','-','_','+','=','.','[',']','{','}','|'
,'`','~',';',':',"'",'"','<',',','>','/','?',' ']

max_length = 0
trans1 = trans2 = trans3 = trans4 = trans5 = trans6 = trans7 = trans8 =

trans9 = trans10 = trans11 = trans12 = trans13 = trans14 = trans15 = trans16 = 
trans17 = trans18 = trans19 = trans20 = [] #we will only consider 20 transition 
matrices... after that, lets just pick trans20 to reuse

list_of_trans = [trans1,trans2,trans3,trans4,trans5,trans6,trans7, 
trans8,trans9,trans10,trans11,trans12,trans13,trans14,trans15,trans16,trans17,tran
s18,trans19,trans20]

list_of_trans2 = []
"""
#Use the following if you want to base the various transition matrices 

on the longest password in the set -- in rockyou the longest was over 280 
characters, too long to actually use!

for i in database:
counter = 0
for j in i:

counter +=1
if counter > max_length:

print i
max_length = counter #longest password, but we don't want 

to do this because its like 286 characters long
"""

#print list_of_trans[0]
list_of_trans2 = []
counter = 0
for i in range(20):

list_of_trans2.append([])
for i in list_of_trans2:

for j in range(94):
list_of_trans2[counter].append([]) 

counter +=1
counter = 0
for i in list_of_trans2:

counter2 = 0
for j in i:

for k in range(94):
list_of_trans2[counter][counter2].append(0)

counter2 +=1
counter +=1

counter = 0
for i in list_of_trans2[0][0]:
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counter +=1
print counter
list_of_trans2[0][0][0] +=1
print list_of_trans2[0]

##################################################################################
#####

progress = 0
for i in database:

#print i
#Now check that i has no forbidden characters.
counter = 0
for j in i:

if str(j) not in charspace:
#print j
counter +=1

if counter >1: #each line has a hidden character used to signal 
next line that's not in charspace. We need counter>1

continue

elif 2<len(i):

counter = 0
for j in i[0:-2]:

if counter<20:
list_of_trans2[counter]

[charspace.index(i[counter])][charspace.index(i[counter+1])] += 1

elif counter >19:

list_of_trans2[19][charspace.index(i[counter])]
[charspace.index(i[counter+1])] += 1

counter += 1
progress +=1

print str(float(progress)/float(562000000) * 100) +"% if you're 
doing rockyou"

for i in list_of_trans2:
counti = 0
#Lets find the sum of the rows to get a denominator
sumofrow = 0
for j in i:

sumofrow=0
for k in j:

sumofrow = int(k) + sumofrow
#print sumofrow
countj = 0
for k in j:

if sumofrow >= 1:
i[counti][countj] = float(k)/float(sumofrow) 
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#To find percentages. Note counti and countj are needed because i,j cannot be 
indeces

#print T[counti][countj]
countj +=1

elif sumofrow == 0:
i[counti][countj] = 0 #To find percentages. 

Note counti and countj are needed because i,j cannot be indeces
#print T[counti][countj]
countj +=1

counti +=1

with open(x+"_index_1.csv", "wb") as f:
    writer = csv.writer(f)
    writer.writerows(list_of_trans2[0])

with open(x+"_index_2.csv", "wb") as f:
    writer = csv.writer(f)
    writer.writerows(list_of_trans2[1])
    with open(x+"_index_3.csv", "wb") as f:
    writer = csv.writer(f)
    writer.writerows(list_of_trans2[2])
    with open(x+"_index_4.csv", "wb") as f:
    writer = csv.writer(f)
    writer.writerows(list_of_trans2[3])

with open(x+"_index_5.csv", "wb") as f:
    writer = csv.writer(f)
    writer.writerows(list_of_trans2[4])

with open(x+"_index_6.csv", "wb") as f:
    writer = csv.writer(f)
    writer.writerows(list_of_trans2[5])

with open(x+"_index_7.csv", "wb") as f:
    writer = csv.writer(f)
    writer.writerows(list_of_trans2[6])

with open(x+"_index_8.csv", "wb") as f:
    writer = csv.writer(f)
    writer.writerows(list_of_trans2[7])

with open(x+"_index_9.csv", "wb") as f:
    writer = csv.writer(f)
    writer.writerows(list_of_trans2[8])

with open(x+"_index_10.csv", "wb") as f:
    writer = csv.writer(f)
    writer.writerows(list_of_trans2[9])

with open(x+"_index_11.csv", "wb") as f:
    writer = csv.writer(f)
    writer.writerows(list_of_trans2[10])

with open(x+"_index_12.csv", "wb") as f:
    writer = csv.writer(f)
    writer.writerows(list_of_trans2[11])

with open(x+"_index_13.csv", "wb") as f:
    writer = csv.writer(f)
    writer.writerows(list_of_trans2[12])

with open(x+"_index_14.csv", "wb") as f:
    writer = csv.writer(f)
    writer.writerows(list_of_trans2[13])

with open(x+"_index_15.csv", "wb") as f:
    writer = csv.writer(f)
    writer.writerows(list_of_trans2[14])
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with open(x+"_index_16.csv", "wb") as f:
    writer = csv.writer(f)
    writer.writerows(list_of_trans2[15])

with open(x+"_index_17.csv", "wb") as f:
    writer = csv.writer(f)
    writer.writerows(list_of_trans2[16])

with open(x+"_index_18.csv", "wb") as f:
    writer = csv.writer(f)
    writer.writerows(list_of_trans2[17])

with open(x+"_index_19.csv", "wb") as f:
    writer = csv.writer(f)
    writer.writerows(list_of_trans2[18])

with open(x+"_index_20.csv", "wb") as f:
    writer = csv.writer(f)
    writer.writerows(list_of_trans2[19])
    
    
    
    

print "Done with indexed T" + x

#markov_indexed_T("rockyou.txt")
#markov_indexed_T("myspace.txt")
markov_indexed_T("anti_stripped_562_mil.txt")
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A.6. Python code to calculate P(password) given data set for stan-
dard Markov chains.

"""
Calculate the probability of a password, given a Markov chain whose parameters 
were determined by some database
"""

import csv
def calcP(x,y): #x determines the database, y determines the password.

charspace = 
["A","B","C","D","E","F","G","H",'I','J','K','L','M','N','O','P','Q','R','S','T','
U','V','W','X','Y','Z','a','b','c','d','e','f','g','h','i','j','k','l','m','n','o'
,'p','q','r','s','t','u','v','w','x','y','z','1','2','3','4','5','6','7','8','9','
0','!','@','#','$','%','^','&','*','(',')','-','_','+','=','.','[',']','{','}','|'
,'`','~',';',':',"'",'"','<',',','>','/','?',' ']

pospi = charspace.index(y[0]) #finds where in charspace the first character 
of the password is

#print pospi 
with open(x+"_Pi.csv", 'r') as f: #Open the Pi file for our database

database = csv.reader(f)
for row in database:

pi = row[pospi] #Grabs the probability of the first state in the 
password

f.close
#print pi
counter = 0
transitions = []
for i in y:

if counter < len(y)-1: #get transitions. The last character doesn't 
transition

t = str(y[counter]) #getting subscripts for a_t,t+1 that will 
give us locations in matrix T

t1 = str(y[counter +1])
transitions.append([charspace.index(t),charspace.index(t1)]) 

#create a list of lists with our transitions in T
#print t + " " + t1
counter +=1

#print transitions

with open(x+"_T.csv", "r") as f: #Couldn't figure out how to access specific
values of T without loading entire matrix.

database = csv.reader(f)
T = []
for i in database:

T.append(i)
f.close

prob = float(pi)
for i in transitions:

#print T[i[0]][i[1]]
prob = prob * float(T[i[0]][i[1]])

 
print "P("+y+") = " + str(prob)

calcP("rockyou.txt", "Kittycat123!")
calcP("rockyou.txt", "0k@#Hckpdz%5")
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calcP("rockyou.txt", "P455w0rd123!")
calcP("rockyou.txt", "z8U73*!mg@5S")
calcP("myspace.txt", "Kittycat123!")
calcP("myspace.txt", "0k@#Hckpdz%5")
calcP("myspace.txt", "P455w0rd123!")
calcP("myspace.txt", "z8U73*!mg@5S")
calcP("anti_stripped_562_mil.txt", "Kittycat123!")
calcP("anti_stripped_562_mil.txt", "0k@#Hckpdz%5")
calcP("anti_stripped_562_mil.txt", "P455w0rd123!")
calcP("anti_stripped_562_mil.txt", "z8U73*!mg@5S")
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A.7. Python code to calculate P(password) given data set and Markov
chain with memory.

"""
calculate probability of password for markov chain with memory = 2
"""   

import csv
def calcP_mem(x,y): #x determines the database, y determines the password.

charspace = 
["A","B","C","D","E","F","G","H",'I','J','K','L','M','N','O','P','Q','R','S','T','
U','V','W','X','Y','Z','a','b','c','d','e','f','g','h','i','j','k','l','m','n','o'
,'p','q','r','s','t','u','v','w','x','y','z','1','2','3','4','5','6','7','8','9','
0','!','@','#','$','%','^','&','*','(',')','-','_','+','=','.','[',']','{','}','|'
,'`','~',';',':',"'",'"','<',',','>','/','?',' ']

memory_matrix = [] #This will eventually be the matrix with our couplets
for i in charspace:

for j in charspace:
memory_matrix.append(i+j) #This creates said matrix.

counter = 0
for i in memory_matrix:

counter +=1
#print counter
first_two = y[0] +y[1]

pospi = memory_matrix.index(first_two)
#print pospi

with open(x+"_mem_Pi.csv", 'r') as f: #Open the Pi file for our database
database = csv.reader(f)
for row in database:

pi = row[pospi] #Grabs the probability of the first state in the 
password

f.close
#print pi
temp_mem = []
length = len(y)
counter = 0
for i in y:

while counter < length - 1: #-2 bewcause we need to ignore the new line
character

temp_mem.append(y[counter]+y[counter+1]) #We now have a matrix 
that has all our clusters

counter += 1
#print temp_mem
length_temp_mem = 0
for i in temp_mem:

length_temp_mem +=1
#print length_temp_mem

transitions = []
for i in range(length_temp_mem-1):

transitions.append([]) #make transitions the right size
#print transitions
counter = 0
while counter < length_temp_mem -1:

transitions[counter].append(temp_mem[counter])
transitions[counter].append(temp_mem[counter +1][1])
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counter +=1
#print transitions # a matrix with all our transitions
trans_loc = []
#for i in transitions:

with open(x+"_mem_T.csv", "r") as f: #Couldn't figure out how to access 
specific values of T without loading entire matrix.

database = csv.reader(f)
trans = []
for i in database:

trans.append(i)
f.close

#print trans
#print pi
#print trans[1][0]
#print float(pi)* float(trans[27][0])
prob = float(pi)
for i in transitions:

prob = prob * float(trans[memory_matrix.index(i[0])]
[charspace.index(i[1])])

print "P("+y+") = " + str(prob)

calcP_mem("rockyou.txt", "Kittycat123!")
calcP_mem("rockyou.txt", "0k@#Hckpdz%5")
calcP_mem("rockyou.txt", "P455w0rd123!")
calcP_mem("rockyou.txt", "z8U73*!mg@5S")
calcP_mem("myspace.txt", "Kittycat123!")
calcP_mem("myspace.txt", "0k@#Hckpdz%5")
calcP_mem("myspace.txt", "P455w0rd123!")
calcP_mem("myspace.txt", "z8U73*!mg@5S")
#calcP_mem("anti_stripped_562_mil.txt", "Kittycat123!")
#calcP_mem("anti_stripped_562_mil.txt", "0k@#Hckpdz%5")
#calcP_mem("anti_stripped_562_mil.txt", "P455w0rd123!")
#calcP_mem("anti_stripped_562_mil.txt", "z8U73*!mg@5S")
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A.8. Python code to calculate P(password) given data set and in-
dexed Markov chain.

import csv
def calcP(x,y): #x determines the database, y determines the password.

charspace = 
["A","B","C","D","E","F","G","H",'I','J','K','L','M','N','O','P','Q','R','S','T','
U','V','W','X','Y','Z','a','b','c','d','e','f','g','h','i','j','k','l','m','n','o'
,'p','q','r','s','t','u','v','w','x','y','z','1','2','3','4','5','6','7','8','9','
0','!','@','#','$','%','^','&','*','(',')','-','_','+','=','.','[',']','{','}','|'
,'`','~',';',':',"'",'"','<',',','>','/','?',' ']

pospi = charspace.index(y[0]) #finds where in charspace the first character 
of the password is

#print pospi 
with open(x+"_Pi.csv", 'r') as f: #Open the Pi file for our database

database = csv.reader(f)
for row in database:

pi = row[pospi] #Grabs the probability of the first state in the 
password

f.close
counter = 0
transitions = []
for i in y:

if counter < len(y)-1: #get transitions. The last character doesn't 
transition

t = str(y[counter]) #getting subscripts for a_t,t+1 that will 
give us locations in matrix T

t1 = str(y[counter +1])
transitions.append([charspace.index(t),charspace.index(t1)]) 

#create a list of lists with our transitions in T
#print t + " " + t1
counter +=1

with open(x+"_index_1.csv", "r") as f: #Couldn't figure out how to access 
specific values of T without loading entire matrix.

database = csv.reader(f)
trans1 = []
for i in database:

trans1.append(i)
f.close

with open(x+"_index_2.csv", "r") as f: #Couldn't figure out how to access 
specific values of T without loading entire matrix.

database = csv.reader(f)
trans2 = []
for i in database:

trans2.append(i)
f.close

with open(x+"_index_3.csv", "r") as f: #Couldn't figure out how to access 
specific values of T without loading entire matrix.

database = csv.reader(f)
trans3 = []
for i in database:

trans3.append(i)
f.close

with open(x+"_index_4.csv", "r") as f: #Couldn't figure out how to access 
specific values of T without loading entire matrix.

database = csv.reader(f)
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trans4 = []
for i in database:

trans4.append(i)
f.close

with open(x+"_index_5.csv", "r") as f: #Couldn't figure out how to access 
specific values of T without loading entire matrix.

database = csv.reader(f)
trans5 = []
for i in database:

trans5.append(i)
f.close

with open(x+"_index_6.csv", "r") as f: #Couldn't figure out how to access 
specific values of T without loading entire matrix.

database = csv.reader(f)
trans6 = []
for i in database:

trans6.append(i)
f.close

with open(x+"_index_7.csv", "r") as f: #Couldn't figure out how to access 
specific values of T without loading entire matrix.

database = csv.reader(f)
trans7 = []
for i in database:

trans7.append(i)
f.close

with open(x+"_index_8.csv", "r") as f: #Couldn't figure out how to access 
specific values of T without loading entire matrix.

database = csv.reader(f)
trans8 = []
for i in database:

trans8.append(i)
f.close

with open(x+"_index_9.csv", "r") as f: #Couldn't figure out how to access 
specific values of T without loading entire matrix.

database = csv.reader(f)
trans9 = []
for i in database:

trans9.append(i)
f.close

with open(x+"_index_10.csv", "r") as f: #Couldn't figure out how to access 
specific values of T without loading entire matrix.

database = csv.reader(f)
trans10 = []
for i in database:

trans10.append(i)
f.close

with open(x+"_index_11.csv", "r") as f: #Couldn't figure out how to access 
specific values of T without loading entire matrix.

database = csv.reader(f)
trans11 = []
for i in database:

trans11.append(i)
f.close

with open(x+"_index_12.csv", "r") as f: #Couldn't figure out how to access 
specific values of T without loading entire matrix.

database = csv.reader(f)
trans12 = []
for i in database:
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trans12.append(i)
f.close

with open(x+"_index_13.csv", "r") as f: #Couldn't figure out how to access 
specific values of T without loading entire matrix.

database = csv.reader(f)
trans13 = []
for i in database:

trans13.append(i)
f.close

with open(x+"_index_14.csv", "r") as f: #Couldn't figure out how to access 
specific values of T without loading entire matrix.

database = csv.reader(f)
trans14 = []
for i in database:

trans14.append(i)
f.close

with open(x+"_index_15.csv", "r") as f: #Couldn't figure out how to access 
specific values of T without loading entire matrix.

database = csv.reader(f)
trans15 = []
for i in database:

trans15.append(i)
f.close

with open(x+"_index_16.csv", "r") as f: #Couldn't figure out how to access 
specific values of T without loading entire matrix.

database = csv.reader(f)
trans16 = []
for i in database:

trans16.append(i)
f.close

with open(x+"_index_17.csv", "r") as f: #Couldn't figure out how to access 
specific values of T without loading entire matrix.

database = csv.reader(f)
trans17 = []
for i in database:

trans17.append(i)
f.close

with open(x+"_index_18.csv", "r") as f: #Couldn't figure out how to access 
specific values of T without loading entire matrix.

database = csv.reader(f)
trans18 = []
for i in database:

trans18.append(i)
f.close

with open(x+"_index_19.csv", "r") as f: #Couldn't figure out how to access 
specific values of T without loading entire matrix.

database = csv.reader(f)
trans19 = []
for i in database:

trans19.append(i)
f.close

with open(x+"_index_20.csv", "r") as f: #Couldn't figure out how to access 
specific values of T without loading entire matrix.

database = csv.reader(f)
trans20 = []
for i in database:

trans20.append(i)
f.close
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prob = float(pi)

"""
Testing some stuff

h = float(trans1[0][26])
i = float(trans2[26][0])
p = float(pi)
print pi
print h*i *p
"""
counter = 1
for i in transitions:

if counter == 1:
prob = prob * float(trans1[i[0]][i[1]])
counter +=1

elif counter == 2:
prob = prob * float(trans2[i[0]][i[1]])
counter +=1

elif counter == 3:
prob = prob * float(trans3[i[0]][i[1]])
counter +=1

elif counter == 4:
prob = prob * float(trans4[i[0]][i[1]])
counter +=1

elif counter == 5:
prob = prob * float(trans5[i[0]][i[1]])
counter +=1

elif counter == 6:
prob = prob * float(trans6[i[0]][i[1]])
counter +=1

elif counter == 7:
prob = prob * float(trans7[i[0]][i[1]])
counter +=1

elif counter == 8:
prob = prob * float(trans8[i[0]][i[1]])
counter +=1

elif counter == 9:
prob = prob * float(trans9[i[0]][i[1]])
counter +=1

elif counter == 10:
prob = prob * float(trans10[i[0]][i[1]])
counter +=1

elif counter == 11:
prob = prob * float(trans11[i[0]][i[1]])
counter +=1

elif counter == 12:
prob = prob * float(trans12[i[0]][i[1]])
counter +=1

elif counter == 13:
prob = prob * float(trans13[i[0]][i[1]])
counter +=1

elif counter == 14:
prob = prob * float(trans14[i[0]][i[1]])
counter +=1

elif counter == 15:
prob = prob * float(trans15[i[0]][i[1]])
counter +=1
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elif counter == 16:
prob = prob * float(trans16[i[0]][i[1]])
counter +=1

elif counter == 17:
prob = prob * float(trans17[i[0]][i[1]])
counter +=1

elif counter == 18:
prob = prob * float(trans18[i[0]][i[1]])
counter +=1

elif counter == 19:
prob = prob * float(trans19[i[0]][i[1]])
counter +=1

elif counter >= 20:
prob = prob * float(trans20[i[0]][i[1]])
counter +=1

print "The probability of " + y +" according to the " + x + " dataset is " +
str(prob)

calcP("rockyou.txt", "Kittycat123!")
calcP("rockyou.txt", "0k@#Hckpdz%5")
calcP("rockyou.txt", "P455w0rd123!")
calcP("rockyou.txt", "z8U73*!mg@5S")
calcP("myspace.txt", "Kittycat123!")
calcP("myspace.txt", "0k@#Hckpdz%5")
calcP("myspace.txt", "P455w0rd123!")
calcP("myspace.txt", "z8U73*!mg@5S")
calcP("anti_stripped_562_mil.txt", "Kittycat123!")
calcP("anti_stripped_562_mil.txt", "0k@#Hckpdz%5")
calcP("anti_stripped_562_mil.txt", "P455w0rd123!")
calcP("anti_stripped_562_mil.txt", "z8U73*!mg@5S")
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