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Abstract

Magnetic Resonance Images captured only from the posterior coil array exhibit
a smoothly varying low frequency “bias field” which significantly distorts the
intensity of the signal across the image plane. This inhomogeneity can be corrected
with existing untrained algorithms, but those algorithms also amplify noise in the
image. In this project we explore two distinct approaches to train a convolutional
neural network to simultaneously denoise and correct the signal inhomogeneity of
MR images. Our first approach uses the original implementation of CycleGAN to
correct noisy and inhomogeneous images by learning from unpaired real training
data. Our second approach started by creating an algorithm to artificially add
inhomogeneity and noise to high-quality MR images. The synthetic data obtained
from this algorithm was then used to train a U-Net model in a supervised manner
to correct the input images. The CycleGAN approach was able to successfully
denoise images, but the inhomogeneity present in the available training data was
not conducive to the specific task we were investigating. The supervised approach
produced successful results on synthetic test data, but real test data is necessary to
more thoroughly evaluate its performance.

1 Introduction

1.1 MRI

MRI is a type of medical imaging used widely in clinical settings for patient diagnosis for a few key
reasons; it is better at capturing high-contrast images in soft tissues such as the brain, and it does
not expose patients to potentially harmful ionizing radiation, as is required in CT and PET scanning
[1]. At its core, the technology exploits the fact that some nuclei like hydrogen are able to absorb
RF signals when placed in a very powerful magnetic field (modern MRI scanners use fields on the
order of 1.5-6 Tesla [8]). The absorption of these RF signals in the hydrogen nuclei induces a "spin
polarization," which can then be detected by additional RF coils to construct an image [17].

While MRI may be less harmful than other types of imaging, it is not necessarily the panacea of
medical imaging. The trade off lies in the fact that MRI is often quite uncomfortable for patients.
Generating the powerful magnetic fields needed for MRI requires comparatively long exposure
periods inside narrow tubes surrounded by magnetic coils that can be quite loud when powered on.

To increase an image’s signal-to-noise ratio (SNR), additional coils are sometimes placed directly on
the patient in a way that could be likened to donning a suit of armor. While these additional coils aid
in creating crisper, more homogeneous images, they also increase the patient’s discomfort, especially
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for obese patients that may find the already-confined spaces very restrictive. The ability to generate
low-noise, high-signal images without needing the additional RF coils is highly sought after because
it may save time, money, and allow clinicians to make more accurate diagnoses, while also improving
the patient’s experience.

Even in the absence of accessory RF coils, the scanning surface upon which the patient lies, called
the "patient table," has an embedded coil array that is often called the "posterior coil". This coil
array serves to increase SNR local to whichever portion of the patient is in contact with the table,
leading to a predictable pattern of noise diffusion and signal intensity inhomogeneity in the images.
In particular, the noise diffusion of MRI is governed by the Rician distribution, which arises when
Gaussian noise in various MRI raw signal1 channels is transformed non-linearly through an inverse
fast Fourier transform in the process of converting the signals into an observable image. In these
images the noise remains uniform in intensity, while the signal drops off with distance from the
posterior coil, resulting in images that become relatively dark toward the patient’s anterior.

1.2 Problem Description

Clean, homogeneous images are of the utmost importance to clinicians and radiologists when making
diagnoses that may mean life or death for their patients. While posterior coil scans generate images
with high SNR local to the posterior coil, the critical nature of radiologists’ work means that they will
often opt to take MRI scans using multiple coil arrays, guaranteeing high image quality. However,
this comes at the expense of the patient’s comfort and the radiologist’s patient throughput, because
configuring the additional coils can be very time consuming and requires the patient to lie motionless
on the scanning bed for much longer when compared to posterior coil scans.

Thus, it is desirable for radiologists to generate scans that have the quality obtained from using
multiple coil arrays, but with the ease, speed, and simplicity of relying only on the posterior coil.
The problem we aim to solve in this project is mapping posterior/"single" coil images to their
corresponding multi coil equivalent. This requires correcting both the image’s inhomogeneity and
denoising it.

1.3 Related Works

While there exist many methods both for denoising MRI scans and correcting signal inhomogeneities,
problems arise when these two tools are used in conjunction. Current inhomogeneity correction
methods unavoidably increase the intensity of whatever noise may be left in the dark portions of the
image. Whether the image is first denoised and then intensity-corrected, or first intensity-corrected
and then denoised, excess noise will remain in the most heavily-corrected portions of the image. This
leads to the non-uniform SNR across the image when using fewer RF coils.

1.3.1 MRI Denoising

Various approaches using machine learning have been attempted to denoise MRI scans. One popular
approach explored by [7] uses a set of stacked patch-based convolutional neural networks (CNNs)
in conjunction with a "rotationally invariant non-local means filter" in an attempt to deal with the
spatially variant noise in MRI. While this method works well for denoising MRI scans, it does little
to deal with the specific types of noise and inhomogeneity created by posterior coil scans.

A significant body of related work also exists in the field of low dose computed tomography (LDCT)
denoising. Unlike MRI, CT scans subject the patient to ionizing radiation, which, according to [1],
can increase the risk of cell mutation and cancer. This risk can be reduced by exposing the patient
to a lower dose of radiation, which comes at the cost of a lower SNR in the image. Numerous
deep-learning methods have been used to improve the SNR in LDCT images, including CNNs [2], a
U-net inspired wavelet network [6], and RED-CNN [3].

However, these works do not specifically address the type of noise or inhomogeneity found in MRI.

1The raw signals obtained by the MRI machine live in the Fourier domain, often referred to as "k-space" by
radiologists
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1.3.2 MRI Intensity Inhomogeneity Correction

Many methods exist for correcting signal intensity inhomogeneity in MRI scans. One relatively recent
survey of methods[16] divides these methods into two broad categories: prospective and retrospective
approaches. Prospective approaches are those that deal with exploiting knowledge of the MRI scanner
to correct inhomogeneity, such as by scanning bags of uniform liquid to generate signal dropoff maps,
or by algorithmically smoothing images that come from a combination of volume coils (low-but-
uniform SNR) and surface coils (high SNR close to the coil, but lower SNR further away from the
coil). Retrospective methods, on the other hand, work primarily in the image/signals-processing
realm and are more agnostic to the particular machine used to generate the scan. Such retrospective
approaches may include segmentation-based methods, wherein tissues are segmented and given a
uniform intensity, or the highly popular N3/N4 (nonparametric nonuniformity normalization)[11] that
"seeks the smooth multiplicative field that maximizes the high frequency content of the distribution
of tissue intensity" [16]. N4 is of particular importance to our project because it is the current tool
favored by clinicians for inhomogeneity correction, and because it will serve as a baseline against
which to compare our approaches.

Again, while these tools are well suited to inhomogeneity correction, they do little to denoise images.

1.4 Our Contribution

The primary contribution our project makes that is not present in existing works is our focus on the
specific kind of inhomogeneity that occurs when capturing only from the posterior coil array. All
of the existing work we found that addresses inhomogeneity approaches the problem from a more
general standpoint, aiming to correct all types and patterns of inhomogeneity with a single solution.
In contrast, our original goal was to target our solutions at addressing a predominantly unidirectional
falloff of the signal in the vertical direction. This kind of inhomogeneity is especially interesting
when considering the issue posed by the noise in the image. The greater attenuation of the signal on
the top of the image versus the bottom creates a highly uneven signal-to-noise ratio across the image.
Inhomogenous images that are created with different receive coil configurations do also exhibit this
characteristic, but the effect is generally less severe in those examples. By training a model to correct
this specific kind of inhomogeneity and noise, the hope is that the model can specialize its filters to
the more narrowly defined task and produce better results than a "jack of all trades" model of similar
complexity.

2 Methods and Theory

2.1 Project Approach

Our project explores two approaches to correcting noise and signal inhomogeneity in posterior coil
MRI scans. The two approaches we implemented, a CycleGAN trained on real data and a UNet
trained on synthetic data, were chosen because they offer a different set of strengths and weaknesses,
at least in theory.

2.1.1 CycleGAN Approach

The lack of paired training data makes some form of unsupervised learning appealing in our case. In
particular, we need a form of unsupervised learning that can learn from the distributions of images that
make up our data set, ie the distributions of "single coil" and "multi coil" images. Because Generative
Adversarial Networks are designed to learn from distributions, we chose to train a GAN-style model
to accomplish our learning task.

Taking this approach has several potential advantages over our UNet approach. First, because the
models learn directly from unedited data, there is no need to make any assumptions about the
inhomogeneity or noise profiles present in the single and multi coil scans. This may be beneficial
because while we assume Rician noise in our scans, there are other types noise in MRI scans that are
much harder to model [5].

Second, because our data set is constructed of scans taken by different machines with different
scanning parameters, the trained model should be more device-agnostic. This may make the trained
model more applicable in clinical settings where many different types of MRI scanners exist.
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Figure 1: This U-Net architecture was originally proposed by [9] for biomedical image segmentation.
We modi�ed the input and output dimensions to re-purpose the architecture for our task.

However, one issue is that GANs, by their nature, make up content. In medical image processing
this is often referred to asimage hallucination[10]. This is obviously undesirable, as one could
imagine such scenarios where an unhealthy patient is not correctly diagnosed after a model has
obscured their disease. To control the ability of the GAN to hallucinate content, we've chosen to use
a CycleGAN model, which augments the standard GAN architecture with a lambda-parameterized
"cycle consistency" loss to ensure that the generated output of the model is within some neighborhood
of its input. By using a CycleGAN, we can formulate the unsupervised learning problem as learning
to map the distribution of single coil MRI scans to the distribution of multi coil scans.

2.1.2 Supervised U-Net Approach

In recent years fully convolutional neural networks have demonstrated state of the art performance
on image denoising tasks [13]. It has been shown in [15] that the architecture of an image-to-image
deep learning model has a signi�cant impact on the model's ability to perform tasks like deblurring,
inpainting, and denoising. Those authors found that models with an "hourglass" shaped architecture
are inherently effective at denoising. These networks are able to denoise their input by extracting
patterns from the image at multiple different scales. The autoencoder is perhaps the simplest example
of such an "hourglass" shaped model. One drawback of the autoencoder architecture is that it
bottlenecks the amount of information that can be conveyed from its input to its output. This is a
problem because �ne details in the input image are important to radiologists, and abstracting those
details away into smooth regions is not acceptable.

The U-Net architecture illustrated in �gure 1 was originally proposed by Ronneberger et al. in 2015
[9] for the task of segmenting biomedical images. To make the existing PyTorch implementation of
the U-Net suitable for denoising images we modi�ed the input and output to be 320 x 320 pixels, and
we changed the downsampling operation from max-pooling to bilinear interpolation.

Like the autoencoder, the U-Net exhibits an "hourglass" shape. This model progressively down-
samples the input until it is a fraction of the input dimension, and then upsamples that compressed
representation progressively to produce an output of similar (or in our case identical) resolution to the
input. Unlike the autoencoder, the U-Net includes residual "skip" connections between the downward
and upward paths. These connections bypass the bottleneck in the model, allowing information about
the input to �ow unimpeded towards the output of the model. Ideally, this model should be able to
learn the same compressed representation that an autoencoder uses to capture large-scale patterns
in the input, while also passing �ner details through to the output. With this structure the model
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